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Internal waves and related initial-value
problems

James Lighthill

Abstract
This paper gives a detailed account of how small disturbances to uni-

formly stratified fluid develop when the initial disturbances are confined to
a limited region. Special stress is laid on properties of vorticity in strati-
fied fluid, with horizontal (yet not vertical) components of vorticity being
propagated away, alongside density variations, in any internal wave - an
important difference from corresponding properties in homogeneous fluid.

The paper includes a comprehensive analysis of the waves which em-
anate from the initial disturbances, as well as of those residual motions that
are left behind after all waves have been propagated away (those in each
horizontal plane being determined from the initial distribution over that
plane of the vorticity's vertical component). Some wathematical details
are included In an Appendix, which outlines too an additional benefit from
these studies by showing how the wave motion generated by any transient
local forcing effect can always be identified as the solution of a well defined
initial-value problem.

1 Introduction

This paper aims to treat comprehensively the development of small disturbances
to a uniformly stratified fluid (oni the Boussinesq approximation) in cases where
the initial disturbances to uniform stratification occupy jus, a limited volume of
fluid but are otherwise arbitrary. Particular attention is aid to the fact that.
while certain elements of the initial disturbances are propagated outwards as in-
ternal waves, a residue may remain in the initial location as an (ultimately)steady
horizontal motion Relationships between the results obtained and general prop-
erties of vorticity are set out with care.

Also, attention is paid in an Appendix to outlining all the necessary mathe-
matical analysis in the simplest possible (real-variable) form so that the mathe-



matical conclusions are easy to follow as well as having clear physical interpre-
tations. Moreover the mathematical equivalence between initial-value problems
and studies of the waves generated by purely transient local forcing effects is
made clear by proving that the latter type of forcing generates the same waves
as would arise from a certain (precirely related) initial-value problem.

In the body of the paper, however, emphasis is laid on physical aspects of how
initial-value problems differ fundamentally for stratified and unstratified fluid.
Without stratification there is no propagation of vorticity; which, on a linear
theory, remains unchanged with time (evidently, the fully nonlinear conclusion
that vortex lines move with the fluid assumes this limiting form for small distur-
bances). Physically, a familiar relationship (section 2) of vorticity to the angular
momentum of a small fluid sphere allows this result to be interpreted in terms of
all pressure forces on the sphere's surface acting through its centre and so having
no power to change its angular momentum.

In stratified fluids, on the other hand, any vertical displacements can result
in horizontal gradients of density. These shift such a sphere's centre of gravity
from its centre of buoyancy (the geometric centre) and so lead to a horizontal
couple or torque on the sphere and a rate of change of vorticity

Owlat = xV 9 , ( g

where s is the proportional change in density from its undisturbed value. Thus,
density variations carried by internal waves carry also changes in vorticity -
which, however, are confined to its horizontal components since g is directed
vertically.

The science of aeroacoustics deals with questions of how turbulent flows in a
homogeneous fluid generate sound waves. Vortex lines in the turbulence move
with the fluid, and the only wave propagation that can carry disturbances away
from the flow is an irrotational acoustic disturbance associated with a source term
quadratic in the disturbance velocities.

By contrast, the study of how vortical disturbances in a stratified fluid gen-
erate internal waves involves no qt'adratic source terms. Already on a linear
small-disturbance theory an initial distribution of vorticity generates internal
waves which carry away changes in the relative density a along with associated
fluctuations (1) in the horizontal components of vorticity. Ultimately, the waves
have removed all variations in a so that, because by (1) W is independent of time,
the residual motion is a steady flow. It is specified on small-disturbance theory
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by the fact that the vertical component of vorticity has never changed, This fixes
the motions in each horizontal plane separately, with shear between planes deter-
mining horizontal components of vorticity; which, however, satisfy (1) because
they are not varying with time.

In my book "Waves in Fluids" (Lighthill 1978) there is not ,much that, in 1994,
I would wish to see altered except section 4.8. In this pzper and its Appendix I
welcome the change of indicat'ng the physical and mathematical materiai which
might (I believe) usefully replace the contents of that section.

2 Vorticity in internal waves

Classically, the vorticity w is interpreted by analysing the motion of a small
sphere of fluid into three components: (i) uniform translation at the velocity of
its centre; (ii) rigid rotation with angular velocity 2tj; and (iii) a symmetrical
straining motion. All of the sphere's angular momentum is in component (ii) and
takes the form I-1w where I is the sphere's moment of inertia. !n general motions
of a fluid, the laws governiug changes of w can be deduced from a consideration of
how forces acting on the sphere may be altering its angular momentum, provided
that the effects of components (i) and (iii) are carefully taken into account.

On the other hand, these latter effects (a convective effect due to the sphere's
translation and a stretching effect associated with changes in moments of inertia
about principal axes of rate of strain) disappear from any studies where the
squares of small disturbances from hydrostatic equilibrium are neglected; since,
evidently, both convective velocity and rate of strain are small as well as the
vorticity components on which they act. In such studies, then, the "small-sphere
angular momentum" model of vorticity is specially easy to apply.

A sphere's buoyancy force, specified by Archimedes' Principle, balances its
weight in hydrostatic equilibrium. On the other hand, these zero-order forceb can
generate a first-order rate of change of angular momentum if small disturbances
displace the sphere's centre of gravity from its centre of buoyancy (the geometric
centre). A gradient Vs of relative density gives the sphere's centre of gravity a
displacements M-I(IlVs), where M is its mass while the second moment of the
mass distribution in the direction of Vs takes the simple form !IVs. But the
sphere's weight Mg, acting through this displaced centre of gravity, generates a
rate of change of angular momentum

S= M`' ( ×Vs) x Mg (2)

from which equation (1) follows in any case where viscosity can be neglected (that
is, where all forces acting on the sphere's surface are pressure forces which share
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with the buoyancy the property of being directed through its centre).

Horizontal gradients of density, then, induce rates of change of horizontal
vorticity components at right angles. For internal waves, this is well illustrated
by the simple case of a plane wave.

On the Boussinesq approximation adopted in this paper, any vertical displace-
ment h is resisted by a vertical force N h per unit mass where N is the VWisil-
Brunt frequency, here taken as uniform. Also, the velocity field is solenoidal, so
that fluid motions must be perpendicular to the wavenumber vector; being di-
rected up or down lines of steepest ascent in surfaces of constant phase under the
combined action of the above vertical force and pressure gradients normal to those
surfaces (WF,p.289). The resultant force along such a line, assumed at angle 0
to the vertical, is N 2h cos 0 per unit -iass; which, in opposing the acceleration of
fluid (02h/Ot2 )sec 0, gives rise to uscillations with the familiar value

S= NcosO (3)

for the radian frequency a (a letter used for frequency in this paper so that W
can be kept for vorticity).

But the oscillations in different surfaces of constant phase are by no means
independent of each other. They take the form of a wave travelling in a direction
n, normal to those surfaces, along which the phase of the oscillation changes
at a rate 27r per wavelength. Thus, horizontal vorticity arises bece.use the fluid
velocity (8h/&) sec0 up the line of steepest ascent has a gradient 0/On normal
to the plane, so that the rate of change of horizontal vorticity is

a (0 2 h _ OhO _ sec 0 - N cos - (4)

which moreover does satisfy equation (1) because it is (-g) times the horizontal
gradient

cos O-(g-N2 h) (5)

On
of the relative excess density s = g-'NWh. Thus internal waves - even in the
simple case of plane waves - involve shearing motions possessing horizontal vor-
ticity, which in turn is always related to horizontal density gradients as indicated
by equation (1).

Moreover, vorticity is important too for internal waves in general. For any
solenoidal vector field (u, v. w) the relationship

curlh = curl curl(u, v, w) = -(V 2u, V2v, V2w) (6)
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is well known; here, its z-component (vertically upwards) gives

- v =y 2 (7)

by equation (1). Now, since as/at can be written as 9 - 1N 2Oh/lt or g-'N2 w, a
second time-differentiation applied to (7) gives the full classical partial differential
equation for internal waves:

2 =-202( + 
) (8)

It is noteworthy, however, that equation (7) for the vertical component of
-O(cur4&,)/1t included only the horizontal components 4 and 7 of W = (4, q, ().
The propagation of these components, as was physically explained above, is in-
timately coupled to the propagation of velocities, densities and pressures in the
wave. By contrast, the vertical component C does not propagate at all; rather,
the vertical component of equation (1) gives

acla = O. (9)

We return in section 5 to some consequences of these different propagation prop-
erties for horizontal and vertical components of vorticity.

3 Group velocity in internal waves

Because in plane waves the fluid moves up and down the lines of steepest ascent
in surfaces of constant phase, these are also the only possible directions of energy
flux, specified as the mean product of fluid velocity and excess pressure. Another
route to the stlLe conclusion is based on viewing energy flux as the product of
energy density with the group velocity U, defined as the gradient of the frequency
o, in wavenumber space; thus, by equation (3), a depends only on the direction
and not on the magnitude of the wavenumber, so that its gradient U must be
perpendicular to the wavenumber vector itself.

This is why crests of internal waves are observed (WF, figure 77) to stretch out
radially from a source of wave energy. Actually, crests above the source appear
to be travelling diagonally downwards (and crests below it diagonally upwards).
reflecting the fact that the wavenumber vector and the group velocity always
have vertical components of opposite sign.

Figure 1 makes this clear by showing how the direction of steepest ascent,
specified in section 2 as making an angle 0 to the vertical, represents the direction
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of the group velocity for a wavenumber direction pointing along the downward
normal tr, the surface of constant phase - simply be,,auoe the frequency a =
N cos 0 increases in the dir.ection 0 decreasing. Also, the magnitude of U is
NK-1 sin 0 in terias of 0 and the magnitude K of the wavenumber.

In an isitial-value problem, we may be interested in how different Fourier
components in the initial disturbance (assumed confined to a limited volume) are
subsequently propagated. Essentially, their energy moves a distance Ut in time
i. Therefore, in spberical polar coordinates (r, 0, 0), defined so that Cartesian
coordinate (x, y, z) with z vertically upwards take the form

x-= rsin0cos 0, y = rsin0sinb, z = rcosO , (10)

their position can be written

r = NK-'tsinO, 0 =0, = (11)

in terms of a definition of spherical polar coordinates (K, 0, 0) in wavenumber
space such that the Cartesian form (k, 1, m) of the wavenumber (with its direction
diagonally downwards as in figure 1) is

k = Kcos0cos ,I = Kcos0sin , rn -Ksinb'. (12)

Equation (11) means that, at time t, two adjacent wave crests (a distance

27rK- 1 apart) stretching out radially from the source region make an angle

(27rK-')/r = 21r/(Nt sin 0); (13)

which, as observed experimentally (WF, figure 77), diminishes as t increases -
and also as 0 increases. For very small 0 (near-vertical oscillations of fluid with
frequency almost =N) the near-vertical energy propagation becomes very slow
indeed; on the other hand, for 0 near 7r (near-horizontal oscillations of fluid with
frequency < N), the near-horizontal group velocity approaches the substantial
value NK- 1 .

As t increases, changes in the amplitude of waves of given wavenumber depend
on changes in the volume r 2 sin Odrd~doi of physical space taken up by waves from
a given elementary volume K 2 cos OdKd~do of wavenumber space. By equation
(H1), this ratio is

r 2 si ,,- sn 2 -sin 0 ' sin0 ; (14)

K2 cosG (0 K K2 cosG k K2hI)(4
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where the minus sign, of course, just implies a reflection and does not affect the
volume change itself, given by the modulus of expression (14).

This modulus can most usefully be expressed, either with r eliminated as
t3 IJI , with

J = -N 3 K-S sin4" secO (15)

as the Jacobian of the group velocity in wavenumber space (WF, p.358); or else
with K eliminated as

r6 (Nt)-3 cosec2 0secO. (]6)

The first form, written t0 Idet Al in the Appendix (where initial-value problen-as
are treated for general linear homogeneous dispersive systems), demonstrates now
the volume occupied by waves from a given volume element of wavenumber Apace
necessarily increases as t3 - so that their energy density diminishes as t- 3 and
their amplitude as t- 3/ 2. At the same time the second form (16) will also be
found (section 4) to offer useful information on amplitude distributions.

4 Waves excited by an initial local disturbance to nni-
formr1 stratification

The initial-value problem for stratified fluid on the Boussintsq approximation,
given that arbitrarily chosen small disturbances to uniform stratification initially
occupy just a limited volume of fluid, is concerned first with identifying the waves
generated (the subject of this section) and then with determining (see section 5)
any residual motions that remain after the waves have been propagated away.
Disturbances to uniform stratification may take the form of

(i) initial vertical displacements h of fluid; along with

kii) an initial, necessarily solenoidal, distribution of fluid velocities (u, v, w).

We show first that the waves generated are uniquely determined given the initial
distributions of h and of Oh/Ot = w. Then we study (section 5) to what extent
this determination has solved the entire initial-value problem.

Both of ,be variables w = oh/t and h satisfy the same equation (8), with
its dispersion relationship (3) linking the frequency a to the polar angle 0 in
the definition (12) of wavenimber. Now section 2 of the Appendix obtains the
solution of a general initial-value problem for a linear homogeneous system with a
given dispersion relations..ip and with given initial values for a dependent variable

7



h and for its time derivative. Here - quite briefly- we apply this solution to
internal waves and physically interpret it.

The analysis in section 2 of the Appendix supposes the frequency to be speci-
fied as a positive function o(k) which takes the same positive value for wavenum-
bers k and -k. These conditions are satisfied by expression (3) for a provided
that the value of 0 appearing in (12) is constrained to lie between --1r and lir.
Next, the functions F(k) and G(k) is wavenumber space are defined so that the
initial values of h and Oh/l& have the Fourier Transforms given in equation (6)
of the Appendix..

The waves then take, at any time t > 0, the exact form given in equation (4) of
the Appendix - which moreover can be usefully approximated in an asymptotic
procedure where t is allowed to become large while the ratio x/t remains constant.
These asymptotics are based on the stationary-phase method (section 1 of the
Appendix) and the conclusions are expressed in terms of the wavenumber k,
which for given x/t satisfies the condition of stationary phase (equation (8) of
the Appendix). Physically, k, is the wavenumber for which the group velocity
U(k,) takes the value x/t, so that energy associated with it has just reached
the point x at time t. Then the asymptotic form of h is expressed in terms of
k, by expression (12) of the Appendix; here, A represents the matrix of second
derivatives of o'(k) at k = k,, with det A as its determinant and S as its signature
(the number of positive, minus the number of negative, eigenvalues).

In the special case of internal waves the relationship between k. and x/t is
precisely that which is embodied in equations (10), (11) and (12) above. More-
over, let A is the Jacobian (15), and the signature S can be shown to be 1 (the
determinant's negative value being associated with the fact that just one of its
three eigenvalues is negative).

But this special case of internal waves exhibits one very striking exceptional
feature. The fact that the group velocity U is orthogonal to the wavenumber k
meanb that x = U(k.)t is itself orthogonal to k, so that the term k, • x which
appears in the phase of the asymptotic expression (equation (12) of the Appendix)
is everywhere zero! In short, the exponentials in it take the forms

•i*Ntco , (17)
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wbich appaaently describe mere oscillations at the frequency a = N cos9. What
then has happened to the wavelike character of the disturbances?

The answer is that, ý-Itbcugh at any fixed position these exponentials rightly
represent oscillations with frequency (3), nevertheless the wavelike nature. of the
disturbances is apparent from the spatial dependence of 9 as defined in equation
(8). Indeed a phase Nt cos 9 has a gradient in the direction (P increasing, as figure
1 shows) of the wavenumber vector equal to

I 0 NtsinO-r(Nt cosF)= r , (18)

which by (11) takes the expected value of minus the wuvenumber's magnitude
K.

Against this background, expression (12) of the Appendix for the waves gen-
erated can now be written in two alternative forms. The first, with the Jacobian
J = det A represented in terms of wavenumber as in (15), expresses the waves of
given wavenumber ±k at time t as

h (2r ) /2 K CaoOe-i/40 [F(k)eCN1c-1 + G(-k)e-iNt.#] (19)

(with equations (12) defining K and 0). Expression (19) shows their expected
decay as t- 3/ 2, associated with an increase like t 3in the volume occupied by waves
from a given element of wavenumber space. That increase is, of course slowest
wherever the magnitude NK-1 sin 0 of the group velocity is smallest; as happens

(i) for waves of large wavenumber K - which, however, are subject to an
additional viscous decay (WF, p.349) like

e (-12)'•K29 (20)

in terms of the kinematic viscosity v; and

(ii) for very small values of 0, corresponding to wavenumbers (12) with
vertical component almost zero so that wave energy exhibits only very
slow propagation (in the vertical direction).

9



Any such singularity around 0 = 0 disappeas, however, when we adopt the more
useful second alternative form for the wave asymptotics.

This represents t3 Idet Al in terms of position in space as in (16), and expresses
the waves found at position (10) after time t as

h ( 3 / 2 (sin0oo 1/2 9)e/4 [F(k)eoNfW + G(--k)e-iNm ] , (21)r3

where k is given by equations (12) with K = Nr-ltsin9. Here, there is rno
singularity as 9 -- 0; moreover, any apparent growth for large t is suppressed by
the viscous decay factor (20) - wherein K itself is increasing with f.

In summary, then, the initial-value problem for internal waves has this useful
general asymptotic solution (21) "s t --o oo for givet, r/t and 0. Moreover, the
demonstration in section 3 of the Appendix 'hat waves excited by any transient
local forcing of the system taken an identical form (with F(k) and G(k) expressed
rather simply in terms of the spatiotemporal Fourier Transform of the forcing
function) adds to the utility of this very general result.

5 Residual motions left behind after waves have been
propagated away

We return now to the question about initial-value problems posed in the first
paragraph of section 4. Initial disturbances to uniform stratification may include
a distribution of vertical displacements h and also a (solenoidal) distribution of
fluid velocities (u, v, w); yet the initial distributionE of h and w alone suffice to
determine the waves generated.

Moreover the solenoidality condition

49u/Ox + Ov/Oy = -Ow/Oz , (22)

taken together with the definition

9v/zx - Ou/a83-- (23)

of the vertical component of vorticity, imply that, in each horizontal plane z = constant,
knowledge of w fixes only the two-dimensional divergence - whereas both its
value and that of C are needed to determine uniquely the velocity field (u, v), in
that plane.

This conundrum's resolution comes from equation (1), and above all from its

vertical component (9). We have just seen that general initial disturbances may
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separately determine, not only those distributior,; of h and w which were sbhwn
in section 4 to excite waves, but also a distuibution of the value (23) of (- while,
conversely, the distributions of w and of C determine those of u and of v. But
equation (9) assures us that the initial distribution of C remains unchanged as
the waves propagate away.

Accordingly, when this propagation has reduced to zero the values of h and
w in the limited region of the initial disturbance, equation (22) has zero on the
right-hand side whereas the righthand side of equation (23) has never varied; so
that the distribution of (u, v) in any plane z = constant has become that vector
field with zero two-dimensional divergence which is specified by the unchanging
vorticity distribution (23). Moreover, since the density is uniform in that plane
(because h has become zero), this steady horizontal velocity field feels no dynamic
effects of fluid stratification.

It may seem paradoxical at first sight that the ultimate steady velocity dis-
tribution (u, v) is fixed quite separately in each plane z =-constant by the (un-
changing) initial distribution of C in that plane. Clearly, between the different
two-dimensional motions in adjacent horizontal planes, a shear must in general
be present - which implies nonzero horizontal components f, 1 of the vorticity
W. Yet these are components which are coupled to the wave motions by equation
(1) so that fluctuations in f and j? must accompany propagation of the waves.

This paradox too can be finally resolved by observing that the ultimate mo-
tions in each horizontal plane are steady motions; thus, the associated shears,
and the corresponding vorticity components f and q/, show no variation with
time. But it is only the time-variation of f or q which equation (1) couples to
density variations. In the asymptotic state where all density variations have been
propagated away, equation (1) allows nonzero distributions of f and ý to remain
in the region of the initial disturbance provided that - as has been found here-
they do not change with time.

References
Jones, D.S. 1982 The theory of generalised functions. Cambridge University

Press.

Lighthill, M.J. 1958 An introduction to Fourier Analysis and Generalised
Functions. Cambridge University Press.

Lighthill, J. 1978 Waves in Fluids (referenced in this paper as WF). Cam-
bridge University Press.

11



Appendix: general mathematical background

on homogeneous linear dispersive-wave
systems.

James Lighthill

In this Appendix, general initial-value problems for a homogeneous linear
dispersive-wave system ame solved expeditiously by an elegant method due to Jones
(1982) for handling multidimensional stationary-phase problems. Afterwards, waves
generated by given transient forcing effects are analysed, and proved equivalent to
well defined initial-value problems.

1. Stationary phase in N dimensions

Asymptotic estimation by stationary phase is capable of rigorous validation
by complex-variable methods as in WF, sections 3.7 (in otie dimension) and 4.8
(in two or three dimensions), but the proofs become arduous in more than one
dimension. Purely real-variable methods, as used by Jones (1982), are more
transparent.

They start from the simple principles of Fourier Asymptotics which are set
out for functions of a single real variable in chapter 4 of Lighthill (1958). These
principles allow the asymptotic behaviour of a function's Fourier Transform to
be deduced from the functiou's behaviour near its singularities by writing down
directly the Fourier Transforms of expressions which represent that singular be-
haviour to a first approximation.

Then a one-dimensional stationary-phase integral such as

f F(k) exp [ft(k)] dk, (1)

where neither the amplitude function F(k) nor the phase function 0k(k) has sin-
gularities, is readily estimated for large t by making the substitution wk(k) = y.
This converts it into a Fourier integral but introduces, of course, an additional
singularity at every stationary point of 0(k); after which Fourier Asymptotics, as
applied to the new integrand's singular behaviour near such points, yields directly
the usual results of stationary-phase theory.

Correspondingly, the same integral (1) with k a vector in N-dimensional space
is estimated asymptotically (Theorem 9.14 of Jones 1982) as a sum of contribu-
tions from stationary points k, of O(k). These, of course, are points where the
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first derivatives of tk(k) all vanish so that the local behaviour of t is dominated
by its matrix A of second derivatives. The contribution from every such point
where the matrix A is nonsingular is found to be

(21r/t)N/PF(lk.) Idet Al1/ 2 ei[1#(ks)+1s/4] (2)

in terms of the determinant, det A, and the signature S of that matrix. (Concep-
tually, this result can be interpreted in terms of the corresponding one-dimensional
result by rotating the axes so that the quadratic form representing the local be-
haviour of O(k) - 0(k.) becomes a sum of squares of components of k - k, with
coefficients whose product is det A while S is the nmunber of positive minus the
number of negative coefficients.)

2. Linear homogeneous dispersive systems

A linear homogeneous dispersive system is one where plane waves with vector
wavenumber k = (k, k2, k3 ) have radian frequency a equal to a well defined
function oa(k); here, we always take er a positive, and as having the same positive
value for wavenumber k as for wavenumber -k. Its gradient, the group velocity

0 = U,(k, k2,k3), (3)

represents the velocity of energy propagation in these waves. Necessarily, it is an
odd function of k (since a is even); thus waves with wavenumbers k and -k,
whose crests move in opposite directions, also have their energy travelling away
from any source in diametrically opposite directions.

Now, a general linear combination

h = f F(k)e@(kj~)t-k'xjdk + I G(k)C-ilv(k)6+k'xldk (4)

of such plane waves (respectively, of wavenumbers k and -k) has initial values

of h and Oh/8t equal to

J [F(k)+G(k)je-'k'xdk and J io(k)[F(k) - G(k)le -ikXdk. (5)

Accordingly, equation (4) gives the wave propagation resulting from arbitrar-
ily chosen initial values of h and 8h/li if these values' Fourier Transforms are,
respectively, expressed as

F(k)+G(k) and ia(k)[F(k)-G(k)]. (6)
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Moreover, the asymptotic behaviour for large t of each integral in (4) is obtained
by the same method, which is set out here for just the first of them.

This assumes the form (1) with

O(k) = a(k) - (k.x)/t, (7)

and the required asymptotic estimate is made for fixed x/t as i -- oc. The
stationary points k, of 0 are points where

U (k.) = x/t, (8)

so that the method identifies the waves appearing for x/t as those whose energy
travels at velocity U given by equation (8). Also, the matrix A is simply the
matrix of second derivatives of o(k) itself (since the last term in (7) is linear),
and its determinant can be written as a Jacobian,

detA-= O(,U 3,U,) U(9)
O(k1, k2, k3)

for the first derivatives (3) - which are the components of the group velocity
vector.

Physically, this happens because equation (8) represents a mapping

kj = tU (k) (10)
between the space of wavenumbers k and the physical locations x where such
wavenumbers are found at time t. Accordingly, the volume element dx in physical
space that is occupied by waves with wavenumber k lying in a volume element
dk is given by the Jacobian of the mapping (10) as

dX e l(IVtU 2,tU3 ) dk= t3 jdetAjdk, (11)

49(ki,,k 2, k3)
and the three-dimensional dependence (2) of amplitude on t-3/2 Idet A1 1 /2 re-
flects this spreading of the energy from these waves over an increasing volume
(11).

The wavenumber (-k) for the second integral in (4) is similarly identified
as k, by the stationary-phase condition U(k) = -x/t, and it follows that the
asymptotic behaviour of (4) taken as a whole is

h - (21r/tY3/2 Idet A1-1/ e"," (F (k,) e+(¢(k)tkxJ + G(--k,) e-[(ktkx]} .(12)

Thus both terms in this solutions of the initial-value problem represent waves with
the wavenumber k, defined by equation (8), as expected on energy-propagation
grounds.



3. Effects of transient forcing

Another interestiLg question related to a general linear homogeneous dispersive
system concerns the waves produced by a purely transient local forcing of the
system. The question is relevant to the subject of this paper because analysis of
such waves identifies them as those arising in a certain precisely related initial.
value problem.

An equation such as

B (-,, iai i !O , •.) h__ q(x, t)O (13)

ma"' represent transient forcing of waves in a linear homogeneous dispersive sys-

tem, for which the unforced system (Bh = 0) has the dispersion relationship

B(a, ki, k2, k3 ) = 0. (14)

The forcing term q(x, t) may be written as a four-dimensional Fourier integral

, +t)- e'vedo" J Q(o, k)e-ik.xdk (15)

(for a > 0) where the inner integral is taken over the whole wavenumber space.
The outer integral is taken along a line below the real axis in the complex plane so
that the system is completely undisturbed for large negative t (when the modulus
of eid" tends to zero).

We are interested in the solution of equation (13) for an initially undisturbed
system, and the expression (15) for q allows this to be written down immediately
as

S-ia+ooe °tdo Q(o' k) e-k.xO(1

Sf B(ok(16)

provided that the system is a stable one. (This condition implies that no poles
of the integrand below the real axis can be present as a result of the dispersion
relationship (14) possessing any solution for a with negative imaginary part;
therefore, the outer integral can be deformed into a path far below the real axis
and must be initially zero.)

For large positive t, on the other hand, the integral with respect to a (for
each value of k), should be deformed into a path above the real axis - which
may involve passing over any poles of the integrand on the real axis such as are
identified by the dispersion relationship (14). When this defines a single positive
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frequency o(k) for each k, the poles are a(k) and -o(k), and each of them makes
a contribution equall to 27ri times that reidue of the integrand which is given when
we replace the denominator by its derivative OB/ca (henceforth written as B,).

From this process, it follows that h takes the form (4) characteristic of initial-
value problems, with the functions F(k) and G(k) defined as

F(k) = 2•r Q(%(1k), k) - Q(-u(k),k)2iB((k),k G(k)=ri B2 (-(k),k) (17)

(Actually, the two denominators in (17) are identical but for a difference in sign
if, as we assume, B is an even function uf a).

This reduction of the transient-forcing problem to a well defined initial-value
problem means that it possesses the same asymptotic solution (12). From a phys-
ical viewpoint the interesting aspect of this conclusion ii that, apart from factors
which depend only on the wave system itself, the wave amplitudes are influenced
by the actual forcing effect q(x, t) only through factors Q(ao(k), k) which relate
to "resonant" terms in the spatiotemporal Fourier Transform of q(x, t); that is,
to terms with frequencies and wavenumbers in the precise dispersion relationship.

/e

Figure 1. Wherever the vetic4 component m of a wavenumber vector (k, 1, m)
with magnitude K takes the negative value m = -K sin e, the group velocity
given by the gradient of a = N cos 0 points diagonally upwards (in the direction
0 decreasing) through position vectors (z, V, z) with magnitude r for which the
verticel com,)onent z takes the pcsitive value z = r cos o.



Wave Packet Critical Layers in Stratified
Shear Flows

S.A. Maslowe
Institute of Geophysics and Planetary Physics
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Abstract

In the inviscid theory of shear flow stability, the eigenvalue problem for a neutral or weakly amplified
mode revolves around possible discontinuities in the eigenfunction as the singular critical point is crossed,
Extensions of the linear normal mode approach to include nonlinearity and/or wave packets lead to amplitude
evolution equations whose coefficients generally involve singular integrals. In the past, viscosity, nonlinearity
or time dependence has been introduced in a critical layer centered upon the singular point to resolve these
integrals. The form of the amplitude evolution equation is greatly Influenced by which choice is made.
In this paper, a new approach is proposed in which wave packet effects are dominant in the critical layer
and it is argued that In many applications this is the appropriate choice. The theory is applied here to
two-dimensional wave propagation in stratified shear flows,

1. Introduction

The normal mode approach to investigating the stability of a stratified shear flow involves superimposing a
small wavelike perturbation on the basic flow and determining its subsequent evolution with time. Because
the Reynolds number is large in most geophysical applications, it is reasonable to employ inviscid theory. We
consider pe, turbations to a locally parallel flow with velocity and density profiles U(y) and 7(y), respectively.

The case of a disturbance that is periodic in space and time (i.e., a neutral mode) turns out to be quite
significant. A characteristic feature of neutral modes in shear flows, as opposed to, say, B6nard convection
is the presence of a critical point slngularity which occurs at that vwlue of y (the critical point yc) where
u - c, the phase speed of the perturbation. The resolution of this difficulty in the classical theory consists
of restoring viscosity within a thin 'critical layer' centered upon the point y.. One consequence is that a
discontinuity in Reynolds strees occurs across the critical layer, giving rise to the unstable oscillations known
as TollmlenrSchiahting waves. The same mechanism was employed by Miles (1957) in a theory for the
generation of water waves by wind.

A somewhat different clas of problems responsible for much of the more recent interest in neutral modes
consists of forced wave initial-value problems. These are not at all hydrodynamic stability problems in the
traditional sense but the mathematics involved, as well as the language utilized, are similar. An example
is the investigation by Booker and Bretherton (1967) of the upward propagation of gravity waves toward a
critical level. The perturbation in this cue is forced by a wavy boundary introduced at time t - 0. On the
basis of a linear analysis, Booker and Bretherton argued that most of the wave energy would be absorbed
in the critical layer. If this conclusion turns out to be correct, then critical layer absorption could serve
as a significant mechanism to limit the propagation of wave energy into the upper atmosphere. However,
for t I 1 the horizontal component of the perturbation velocity becomes infinite and, consequently, the
linearization Is no longer valid. Attempts to continue the analysis by Introducing nonlinear terms in the
critical layer are reviewed in a survey article by Stewartson (1981). Recent evidence suggests that some
energy is transmitted beyond the critical level and more is reflected.

The absorption described above, as well as the ToWlmien.Schlichting instability mechanism, is the result
of a 'phase change' occurring across the critical layer. This so-called phase change is represented in the
mathematical analysis by branch point singularities arising in the ';near, inviscid solutions, as will be outlined
below. Specifically, quantities written as (y - y,) for y > y., take the form I V - y. I exp (-br) for V < pa.
In linear initial-value problems, such as the one treated by Booker and Bretherton, this rule is arrived at
by considering the long-time behavior of an inviscid flow, whereas in the classical theory the same result is
obtained from an asymptotic large Reynolds number analysis of the Orr-Sommerfeld equation.



Any notion that the -ff phase change is a universal result was dispelled, however, by the recent devel-
opment of a nonlinear critical layer theory. Benney and Bergeron (1969) shov!#.d that across a critical layer
dominated by nonlinear effects, rather than viscosity, there is no phase change at all. One consequence is
that the inviscid eigenvalue problem admits an entirely new class of waves which were computed for a number
of shear flows by Benney and Bergeron. Such neutral modes are of particular interest in geophysical fluid
dynamics because the Reynolds numbers in geophysical shear flows are typically very large and, therefore,
a nonlinear critical layer is more appropriate than one in which diffusive effects dominate. Applications in
geophysicas fluid dynamics and other aspects of the theory, such as viscous effects, are reviewed in a survey
article by Maslowe (1986).

The first attempt to introduce time dependence Into the nonlinear critical layer theory Is contained
in the paper by Bonney and Maslowe (1975). It was found advantageous in that work to generalize the
monochromatic normal mode approach by considering wave packets. This, in any case, is consistent with a
trend evident during the past 20 years in research on both stability and wave motion which is motivated by
the observation that in nature, as well as in many experiments, disturbances are more likely to be packets
than monochromatic waves.

Suppose that, instead of a single Fourier mode, we consider a disturbance in the form of a wave packet
whose horizontal length scale is O(1/ju), with p 'C 1. The evolution of such a packet can be studied
using the methcr of multiple scales by introducing an amplitude A(X, T) which varies slowly in space and
time; X and T are slow scales arpropriate for describing the long-time evolution of an associated initial-
value problem. The quantity A(X, T) satisfies a partial differentiai equation which often turns out to be
the Ginsburg-Landau equation in weakly nonlinear stability investigations. Let us consider only the linear
portion of the amplitude equation and suppose that there is some parameter R in the problem (other than
the wave number) such that instability occurs for R slightly greater than R,,, its neutral value. Under these
circumstances, A satisfies the PDE

"(LA + O, OA + . w (,

where a, the wave number, is real and w in stability problems is often complex with its real part being the
frequency. The quantities 8Ow/•," are given by expressions involving integrals which may be singular in
the inviscid theories. The specific manner of computing these coefficients will vary from one problem to
the next, but what is important is that the general form of (1) always applies provided that the dispersion
relation is analytic.

This paper presents a new approach to dealing with critical layers arising from the propagation of wave
packets satisfying (1). it will be shown that if 1, b C1/2, where c is an amplitude parameter, an inviscid
linear critical layer theory can be developed which, in some sense, is related to the initial-value problem for
a packet. After outlining the linear theory, it will be indicated how nonlinear effects can be incorporated
into the critical layer analysis and the influence of nonlinearity on the outcome is discussed.

2. Waves in stratified shear flows

To illustrate the basic idea as simply as possible, we consider the equation stating that the density of a
fluid particle remains constant in a stratified flow, viz., Dp/lDt - 0. The perturbation A(x, y, t) to the mean
density '(f), in linear inviscid theory, satisfies

+ - ' ± (2)
at x ax'

where ý is the perturbation stream function. If we consider normal mode disturbances proportional to
exp(io(z - d)), then the V - dependent part of # satisfies

-- 0, (3)
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where 0(y) satisfies the Taylor-Goldstein equation. In the case of a ncutrai mode, c is -eal and has algebraic
branch points where U - c. Clearly, p is more singular than 0 and it will now be shown ho; the no~ion of a
wave packet can be used to eliminate the singularity.

We introduce the slow variables X = Mx and T = jt Lrnd consider somewhat more general perturbations
by writing

-*(X,11 , T)e•(-) and ý - p(X,p,T)e4Q(Z-€C). (4)

Multiple scaling transforms the z and t derivatives according to

0O 0 a 8

T-i + uT-and -- fa-i 3

and introducing this transformation into (2) leads to the following partial differential equation (PDE) for p:

(U - c) - . ;0 OX 6T}P oaýX (5

Clearly, (5) reduces to the singular equation (3) In the limit JA = 0; but for a finite bandwidth packet
(i.e., 14 > 0) the singularity is no longer present, We seek a solution of (5) by expanding p in powers of 14
and write

p = A(X,T)pd(y) + pAxpg + IA2Axxp3 +..., (6)

where A satisfies the usual equation for a linear wave packet, namely,

A7 = cAx + -'dAxx = 0. (7)

Here, c, = w' is the group velocity and d is proportional to wd" [cf.(1)]. The generalization of the
Taylor.Goldstein equation for 0 is accomplished in a similar manner. Due to its length, this PDE Is not
reproduced here, but for the interested reader it is equation (3.5) in the recent paper by Maslowe, Benney
and Mahoney (1994).

Of course, the lowest-order terms in (6) and the corresponding expansion for 0 will be singular at the
critical point. However, Maslowe et at. have shown that the transition relations across the critical point can
be determined by introducting a critical layer of thickness M. Appropriate inner variables are

Y = (y - 0 c)/i, A ; p 6 and P = IAp, (8)

where -f is a function of J., the local Richardson number at the critical point in the case J. < 1/4, whereas

for Jo > 1/4, -t = 1/2.

Substituting the variables (8) into the inviscid, linearized Boussinesq equations leads to •he inner equa-
tion

(y +.• )'f•(0) +J D0
+ X "+ ° 1, (9)

where p - aGo/(cs - c) and O(N) is the leading term in an expansion of 0. Note that the group velocity
appears because, to lowest order, Ar - -cgAx according to (7) and this result has been used to eliminate
time-dependence.



Solving (9) is far from a trivial matter but the information of greatest interest, i.e., the phase change,
can be de'.ermined by employing a IFourier transform in X followed by large IYI asymrptotics. An interesting
and subtle point has to do with the behavior of V(o) as X --# o, in the case of a neutral mode. A singularity
on the real axis in the waveitumber space arises after taking the Fourier transform of (9) and a radiation
coadition must then be imposed in order to decide which way to indent the contour when inverting the
transfonn. This condition in the case c9 > c is that upstream of the disturbance the presence of the packet
is not sensed so that V(). 0 as X -. oo. (Note that (7) implies that we are in a frame of reference moving
with the packet at the group velocity.) Conversely, when c, < c, individual wave crests are moving faster
than the packet and, as a result, V(O) -, 0 downstream of the packet, i.e., as X --+ -oo.

IL develops that "n both cases asymptotic matching of the critical layer solution to the outer expansion
requires that we write Y - e= a I as Y -* -oo, i.e., tho phase change is -7r. This assumes that _> 0;
for *4< 0 the phase change is 7r, exactly as in the classical theory. As a consequence, the theorems proved
by Miles (1961) using Frobenius expansions of the Taylor-Goldstein equation are applicable to flows with a
wav packet critical layer.

As mentioned in §1, there is a great deal of interest in the critical layer absorption problem with

J, > 1/4. Tue conclusions of Booker and Bretherton, based on the phase changes first derived by Miles,
are not contradicted by the present analysis in the linear case. However, the solutions found by Booker and
Bretherton break down as t - oo. Diffusive effects (viscosity and heat-condi'ction) can be introduced to
deal with the singularity as shown by Hazel (1967).

i lie present approach, on the other hand, does not require the use of dikTusive effects. Moreover, wave
packets are probably a more appropriate choice than diffusion because di.turbances in the real atmosphere
and oceans are uilikely to be monochromatic. Wave packers have also been employed by Winters and Riley
(1992) using ray theory and multiple scales. Their analysis, however, leads to critical point singularities as
t-. oo which must be resolved by introducing diffusion. The present formulation avoids such breakdowns
by using matched asymptotic expansions and scales appropriate to the long-time critical layer dynamics.

3. Nonlinear effects

The ultimate goal of the wave packet critical layer theory is to deal with situations where nonlinearity is
present at the same time as packet dispersion. When J., tihe local Richardson number, is equal to or greater
than 1/4 the nonlinear critical layer thickness is r213 so the balance of interest is p -= c2/3 and we are
discussing forced waves.

Brown and Stewartson (198(i) have considered the inviscid initial-value problem with the early stage
described by linear theory and the onset of nonlinearity is described by a quasi-steady ijonlinear rritical layer
%nalysis. The initial breakdown of linear theory occurs when t _- O(C- 2/3 ) and to go beyond ..,. point an
expansion in powers of T = e2/3t was employed to determine the first effects of noilinearity. It was found
that the latter consist of an exponentially smeli transmitted wave and a more significant reflected wave.

Troitskaya (1991), or the other hand, coisidered the steady problem for forced waves when both non-
linearity and diffusive effects are present in the critical layer. While many of her findings are consistent
with the results of Brown and Stewartson and others, a significant mean flow distortion is also revealed. For
example, a jump in mean vorticity across the critical layer occurs which is larger in order of magnitude than
the disturbance which produces it.

The present work is in the same spirit as the two papers cited in the preceding paragraphs except that
we wish to determine how quantities such as wave reflection and transmission vary as a function of the
parameter ý2 /3/p1. Based on the results of Brown and Stewartson and related studies of Rossby wave critical
layers, it is likely that the amount of wave momentum absorbed decreases as this parameter increases owing
to increased reflection and transmissi .. An interesting question in light of Troitskaya's analysis is how much
mea-. flow distortion occurs in the wave packet critical layer when diffusive effects are ignored. These and
related matters will be discussed in the talk, this aspect of the research being in its preliminary phase.
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Abstract
We present observational evidence of the presence of a three layer density distribution, coupled
with a sheared velocity profile, in the vicinity of a river mouth.
We discuss the subsequent evolution of such multi-layer shear flows both theoretically and ex-
perimentally. Three distinct types of instability are observed it. accordance with the predictions
of linear theory. In the laboratory, we measure the density profile and the velocity profile (us-
ing a seven point laser doppler velocimeter) continuously, and so are able to identify the flow
characteristics that obtain when the flow is unstable to each of the different instabilities. The
most important parameter responsible for the selection of the particular type of instability is
found to be the ratio R of thm. depth of the intermediate density layer to the depth over which
the velocity varies, though any asymmetry in the flow (either la the velocity or density fields)
also plays a role.
The development of the various instabilities can be simply and intuitively interpreted in terms of
interactions of interfacial waves, and at finite amplitude each type of instability has a different
structure and mixes the flow in a qualitatively different manner. In particular, if R is close
to 1, and hence the layer of intermediate density occupies a significant portion of the shear
layer, overturnings appear in the intermediate layer, which are longlived, and strongly two
dimensional. These overturnings are the three layer stratified generalisation of the Kelvin-
Helmholtz instability first discussed by Taylor (1931). Surprisingly, these modes inefficiently
mix the background flow, and the major mixing mechanisms are found to be overturnings
in the lower fluid layer (and, to a lesser extent, the upper layer). These overturnings are
manifestations of a three layer generalisation of the Holmboe (1962) instability, as discussed
in Caulfield (1994). In general all three instabilities can be observed simultaneously at markedly
different wavelengths and phase speeds for extended periods of time, even though linear theory
may predict significantly different growthrates. The interaction between these various unstable
waves markedly modi ies the long-time evolution and mixing of the flow.

1: Theoretical introduction

In the immediate vicinity of a river mouth, much mixing takes place due to the sudden widening
of the channel which the river flows along, which can lead to a three layer density structure
which is then sheared by the salt wedge and river counterflow. This has been observed in field
measurements of the Ishka river in Hokkaido, Japan.

The first theoretical investigation of a flow with a three layer density field was conducted
by Taylor (1931), at the extreme of a three layer density field with the intermediate layer the
same depth as the region of velocity variation. For all Rio, this flow exhibits overturnings in
the intermediate layer, which propagate at the mean velocity of the background flow. As Taylor
states, these overturnings can be thought of as arising from resonances of two gravity waves,
one on each of the density interfaces. This instability has not been observed experimentally.
Generalising his work, We wish to consider a flow with a three layer density distribution, but a
priori we make no assumption about any symmetries between the density field and the velocity
field. In particular, wi do not assume that the intermediate layer has density equal to the mean
of the other two layers. This generallse.s the results of Caulfield (1994). We consider a flow,
which in an appropriate frame of reference, has a background velocity distribution U(z) such



that
th t -A U/2 z <_ -d/2 ,

U(z)= AUz/d, -d/2 < z < d/2, (1)AU/2 , z > d/2 ,

i.e. we consider a piecewisf linear shear layer of depth d. We consider a piecewise constant
three layer density distribution with intermediate layer depth 6, with a midpoint displaced an
arbitrary distance h below the midpoint of the shear layer. Thus the flow has a background
density profile p(z) such that

p,3 z<:5-(6/2 +h),

p(z)= P2 -(6/2+h< z<6/2-h, (2)
p, z>Z/2-h.

Four non-dimensional parameters that describe the nature of the velocity and density distribu-
tions are defined as

g(Ps- p)d 6 P2 -P 2h

Rio AU2 , R-, =.-. ,- - _3

Rio is the bulk Richardson number. R is a measure of the relative depths of the intermediate
density layer to the depth of the shear layer (see Caulfield 1994). The parameter 0 is the three
layer generalisation of the parameter (used by Lawrence et al. (1091) to quantify the asymmetry
in a two layer flow system. In our work, 0 is a measure of asymmetry in the location of the
density field relative to the velocity field, while the parameter 0 is a measure of the asymmetry
in the distribution of the density field. It is important to note that in general 1 can be negative
(and thus the midpoint of the intermediate layer is above the midpoint of the shear layer), while
R and 0 must be between 0 and 1.

In our calculations, we assume that 111 + R < 1, and hence that the region of intermediate
density is entirely contained within the region of varying velocity. This situation is thought to be
the most physically likely. Relaxing this condition changes the governing equations slightly, but
does not change the results significantly. By classical normal mode methods of matching pressure
and vertical disturbance across interfaces, we may derive a sixth order eigenvalue equation for
the phase speed c,

c6 + alcs + a 2C4 + a3 c3 + a 4c
2 + ase + as = 0, (3)

where the e, are well defined functions of a, the non-dimensional wavenumber (i.e a =_ kd/2),
Rio, R, 3 and 0. The flow is' unstable if cf > 0, with growthrate ac,.

As (3) is in general a sextic, we expect that, in general, the equation will have six, complex
roots. In figure la, the real parts of these roots (i.e. the phase speed c,) are plotted with solid
lines against a, for a typical experimental values of Rio, R, 1 and 0, namely Rio = 1.5, R = 0.4,
,3 = 0.2 and E = 0.5.

Regions of instability correspond to regions where two of Le roots have the same phase
speed and wavenumber. In this case, one of the roots is damped and the other one is predirted to
grow. It is instructive to think of each of the instabilities as arising through an interaction of the
(notional) marginally stable waves which would exist on each of the interfaces if the interfaces
were totally isolated from each other, as discussed by Cairns (1979). To use the technique of
Cairns, we must first consider each of the interfaces separately, which corresponds to the limit
of large a, and hence short wavelength. In the large a limit, each of the interfaces is essentially
decoupled from all of the others (provided that 101 + R # 1) and we can obtain equations for
the phase speed of the disturbances on each of the interfaces separately. In figure I&, we plot
the phase speeds calculated for marginally stable waves on each interface as dashed lines. Now
it is clear that each of the regions of instability can be identified with an interaction between
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two of the interfacial waves, which occurs when the two waves have equal phase speeds and
wavenumbers.

The small real phase instability occurs when there is an interaction between the gravity wave
on the upper density interface which is travelling upstream relative to the background flow, and
the gravity wave on the lower density interface which also is travelling upstream relative to
the background flow. This corresponds to an asymmetric generallsation of the situation first
considered by Taylor (1931), and for arbitrary R by Caulfield (1994), and we shall henceforth
refer to this as a T mode.

The two regions of large (positive and negative) real phase speed instability correspond to
the asymmetric three layer generalisation of the modes first considered by Holmboe (1962), and
we shall refer to them as the HP and HM modes respectively. They are caused by interactions
between upstream propagating Rayleigh waves (waves on vorticity interfaces) and downs, ream
propagating gravity waves on the nearer density interface. Both are locally driven.

There is the possibility of two further regions of instability at small wavenumber, if the
Rayleigh waves resonate with the gravity waves on the further density interface. These are
non-local interactions, which we refer to as R modes.

For the parameters chosen for figure 1, the full calculations show that the IR type modes
are unstable at wavenumbers where the large a approximation used in the derivation of the
expressions for the phase speeds of the interfacial waves is not valid. Indeed, there is a noticeable
difference between the crossing of the interfacial waves, when their phase speed as a function of
wavenuzmber is calculated separately for each interface, and the crossing for the roots of the full
equation (3).
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Figure 1: a) Variation of phase speed with wavenumber fox solutions of (3) (solid lines) and masrinally stable
waves on the interfaces (dashed lines) for Ri0 = 1.5, R = 0.4,/ = 0.2 and G = 0.5; b) Stability
boundary with contours of growthrate (solid lines) and phase speed (duhed Line) for R = 0.4. 0- = 0.2
and 0 = 0.5, asymptotes of marginally stable modes are shown as a long dashed line.

In figure 1b, we plot the regions of instability predicted by (3) in Rio-a space along with
the resonavce conditions for the various wave interactions for 0 = 0.2, R = 0.4, and 0 = 1/2.
Each branch ultimately asymptotes to the appropriate predicted resonance, as shown by the
thick dashed lines, provided Rio (and hence a) is sufficiently large.

Although not shown here, the relative significance of the various branches varies markedly as
the various parameters change. The most significant effect is that the T mode moves to larger
a and smaller growthrate as R decreases, while the Holmboe type modes start to dominate.
Positive (negative) 0, or 0 < (>)1/2 decreases (increases) the wavenumber of the HP modes
relative to that of the HM mode, and increases (decreases) the HP mode growthrate. The R
modes are only significant at small R. Thus, a simple consideration of the various interfaces
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separately sheds valuable insights on the growth mechanisms, phase speeds and wavelengths of
the different types of instability predicted by the linear model.

2: Experimental procedure

A series of experiments were conducted in a flume 8 metres long by 50 cm wide with a terminal
reservoir 2 metres long by 3 metres wide by 10 cm deep (see Yoshida 1986 for a description of
the tank). The flume (modelling a river) was filled with a saline solution of density p3 (typically
1.006kgm- 3 ) to a depth, d3 of 4 or 6 cm. A less dense, though still salty layer of density p2, dyed
with Sodium Fluorescein (Uranine or C2oHjoNa2 O2 ) was then introduced, until the total depth
became 10 cm and the reservoir (representing the sea) overflowed. By variation of the denqity
of this (intermediate) layer, the parameter 0 was varied between four values, namely 0 = 1/4,
1/3, 1/2 and 2/3. A constant flux, Q, of fresh water was then introduced at the upstream
end. A constant flux was also introduced to the flexible impermeable floor of the reservoir, and
hence both the lower layer and upper layer had non-zeru velocities, and an approximately linear
velocity shear existed across the entirety of the intermediate dyed layer (see Yoshida 1986). It is
important to note that, due to the experimental geometry, the absolute value of the upper layer
flow in the laboratory frame is appreciably larger than the absolute value of the lower layer flow,
and so the mean velocity of the flow was typically towards the downstream end.

Various values of flow rate, p3 and p2 were chosen to allow for variation in background flow
parameter values. Due to the constant flow of the upper layer, the depth of the intermediate layer
continually decreased with time. The density field was continually measured with a conductivity
probe which slowly traversed the depth of the channel 58.8cm from its downstream end. In
figure 2a we plot the density distribution at various times for a typical experiment. After initial
transients, the Interfacial width was found to be o(21 mm), and the depth 6 of the intermediate
layer can be seen to decrease as time passes.

The time evolution of the velocity field throughout the whole depth of the tank was tracked
through time using image analyeis of dye streaks, calibrated at seven points by a laser doppler
velocimeter (LDV), located at 90.8cm from the end of the channel. Since the depth, 6, of the
intermediate layer of fluid continually decreased with time due to entrainment, the mean upper
layer velocity was not a constant throughout the experiment, but rather decreased, with a decay
rate slow relative to the observed instability lifetimes. The range of values over which AU varied
was a function, quite naturally of the lower layer depth d3 and the volume flux, Q of fresh water.
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Figure 2: Evolution in a typical experiment of a) density profile, labelled with time in seconds (each reading
is shifted by 0.01); b) velocity diference between two LDV measurements.

The time evolution of the velocity difference AU between two of the LDV signals, one
located at a depth of 1.2cm from the bottom (and so definitely in the lower layer) and the
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other at a depth of 8.05cm from the bottom (and so definitely in the upper layer) for a typical
experiment is shown in figure 2b.

Another important (experimentally measured) quantity is d, the shear layer depth. Initially,
as the flow develops, this depth Increases, but a short time after shear is established across
the entire width of the intermediate layer the shear layer depth d attains a maximum, and
subsequently decreases with time. The rate of decrease of the depth, 6, of the intermediate layer
was always futer than the rate of decreue of the shear layer depth, d, and so the value of the
parameter R decreased as the experiment progressed. Another significant observation i though
the depth of the intermediate layer decreases with time, the density does not vary appreciably
until late In the experiment, which Is consistent with the observation that little fluid is entrained
into the intermediate layer due to the flow Instabilities at large values of R, as can be seen in
figure 2a.

The effect of a slow reduction in AU is to increase the bulk Richardson number Rio of
the flow, while the reduction in shear layer depth d tends to decrease the value of Rio. On
balance, in general Rio tends to decrease as the experiment continues, although not totally
monotonically. Thus, large values of R, which pertain at the beginning of an experimental run
before significant erosion of the intermediate layer, correspond in general to large values of Rio.
The parameter / varied slowly and randomly within each experiment. Throughout our complete
set oi experiments, 1.03 <_ Rio : 2.83, 0.1 < R 5 0.78, -0.34 < 0 < 0.2 and 0.25 < O <_ 0.75.
The flow structure experimentally imposed allowed us to observe the behaviour of flows at
widely varying values of the parameter R, and thus allowed us to explore the effect of this new
parameter on the behaviour of the flow.

3t Experimental Results

Qualitatively, all the experiments underwent similar transitions throughout their duration. The
flow was visualised by means of a centrally located lightsheet, about 50 cm from the reservoir-
flume channel junction. After an Initial transient, the shear layer extended over the entire width
of the intermediate density layer and the parameter R was close to 1, i.e. the intermediate layer
was In some sense "thick". At this initial stage disturbances on the two density interfaces locked
in phase in an approximately sinuous manner, the Interfaces cusped inwards, and regions of
overturning appeared within the intermediate density region (see figure 3a). These disturbances
propagated at phase speeds close to the velocity of the background flow at the midpoint of
the intermediate layer, and we identified these as T mode type disturbances. This Instability
caused large deflections In the location of the density interfaces (as can be seen from some of
the profiles in figure 2a), but little entrainment. As discussed in section 2, the value of R slowly
decreased throughout the experiment. Typically, as R decreased, the wavelength of the T mode
type disturbances decreased (see figure 3b). Eventually, regions of overturning, propagating at
speeds close to, but always less than the absolute value of the background flow appeared above
and/or below the intermediate layer. T mode disturbances persisted for significant times after
the appearance of the other two types of Instability (see figure 3c). As observed by Lawrence
et al. (1991) in the two layer case, asymmetry In the background flow has a profound effect on
the wavelength and phase speed of the Holmboe type instabilities.

As the regions of overturning in the upper and/or lower layers passed by, we observed
cusping upwards of the upper density Interface and/or cusping downwards of the lower density
Interface, and thus we Identified these disturbances with HP and HM mode type disturbances
respectively.

Finally, as the intermediate layer became "narrow", the T mode type disturbances dissap-
peared, and the flow became qualitatively similar to the previously studied two layer case (see
figure 3d). Occasionally, particularly in the cases where Q the volume flux was small, and hence
Rio was large, extremely long wavelength disturbances, with relatively small absolute values of
their phase speed appeared. These disturbances were suggestive of R mode type disturbances,
though they were too Infrequent to constitute conclusive evidence. Also, as the intermediate
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layer became narrow, it became increasingly difficult to visualise the overturnings in the upper
layer, as their associated upward cusping of the upper density Interface became indistinct, and
since they propagated at speeds of the order of centimetres per second in the laboratory frame,
positive identification of these modes for R less than about 1/4 became impossible. Since, within
the laboratory frame, the overturing. in the lower layer were virtually stationary, we were able
to identify this type of instabilty (i.e. HM modes) to sraoaller values of R ~ 0.1.

Figure 3: Experimental observation of: i) T modes for luge R; b) T modes for smaller R; c) T modes and
H modes; d) H modes alone. The scale is a cm.
In all, eighty nine well-defined unstable structures were observed, with, as discussed above,

three qualitatively different finite amplitude structures, namely T, HP and HM mode type
structures. Each experimental observation at a certain wavenumber with associated phase speed
has associated with It five experimentally determined parameters, namely Rio, R, 0, 9 and lower
layer depth d3 . As discussed In section 1, Rio, R, 0 and E all affect the predicted properties of the
linear instability. However, It was found that variation with R had the most pronounced effect,
and so for each type of instability, we plot the observed wavenumber against R, to compare with
predictions (shown as two points of the same symbol type connected with a line) of the linear
theory developed in the section 1. In all cases the symbol type refers to a different combination
of experimental values of 0 and d3, as shown in the key. These were found to be Insignificant.

In figure 4a, we see that there is a very close agreement for the wavenumber of the T
mode type disturbances (as seen by the fact that most experimental observations lie on the
line connecting the two extremal theoretical predictions). A similar result holds for the phase
speed. Thus we have observed the T mode, and we also see the predicted transition to larger
wavenumber as R decreases. The T mode overturnings were found to be strongly two dimen-
sional, and though the overturnings were longlived within the intermediate layer, very little fluid
was entrained from the other two layers, and hence the T mode did not contribute greatly to
the mixing. This Is not entirely a surprise, as Rio is of order 1 here, and thus the mixing effects
of Kelvin-Helmholtz type billows Is thought to be severely suppressed. What is surprising is
the continued eoservation of these modes to quite small values of R ,- 0.25, where linear theory
predicts that the growthrate of the T mode is appreciably smaller (as little as 10% in extrem't
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cues) than the growthrates of the Holmhoe type modes. As discussed in Caulfield (1994) for
a symmetric flow, this may be due to the possibility of a resonant triad Interaction between
the Holmboe type instabilities and the T mode type instabilities An alternative hypothesis is
that, since the critical layers of the various modes are so well separated, the growth and equili-
bration at finite amplitude of each mode proceeds in a manner essentially decoupled from the
other modes, and thus the convential argument that the most unstable mode of linear theory
eventually dominates Is appropriate only within each branch.
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Figure 4: Experimentally meuured wavenumbers plotted gainst linear predictions for a) T mode for large
R; b) HP modes, c) HM modes alone.

Considering the Holmboe type Instabilities, In figures 4b and 4c we plot observed wavenum-
ber for HP type modes (i.e. upward cusping waves on the upper density Interface associated
with overturnings in the upper layer) and HM modes (i.e. downward cusping waves on the lower
density Interface associated with overturnings in the lower layer) with the regions predicted by
the model to be unstable to HP and HM mode type disturbances. Once again, we see that there
is a very close agreement. In these cases, no one of the parameters dominates the prediction and
observation of the wavenumbers of the Holmboe type modes, and a knowledge of all the bulk
properties of the flow is necessary to properly predict the observed Instability, though there is
some evidence of the predicted transition to larger wavenumber as R increases. Once again, the
fact that other types of instabilt, were predicted to have greater linear growthrates than either
of the Holmboe type modes does not preclude the development of said mode to finite amplitude.

The two Holmboe type modei were also two dimensional, and their wavefronts extended
across most of the width of the tank, uropagating parallel to the background flow. For significant
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periods all three types of instability could be observed. Both Hohmboe type modes, as shown in
figures 3c and 3d, caused cusps to appear on the density interfaces, and were the major cause of
mixing within the flow. It was difficult to quantify the effect of the HP modes since the upper
layer fluid is continually being advected out of the observation area. However, due to the slow
moving nature of the lower layer flow, it was possible to observe the mixing due to the HM
modes at least qualitatively. This mixing associated with HM modes of the intermediate layer
with the lower layer was often sufficiently vigorous for another, fourth, layer to appear with
density intermediate between p3 and p2 (see figure 2a, the plot of the density profile at t = 720
seconds, late in the experiment).

4M Conclusions
A simple linear model well predicts the wavelengths and phase speeds of several forms of

instability observed in a stratified shear flow, a simple idealisation of a flow which has been
observed to occur at a river mouth.

In particular the linear mode first discussed by Taylor (1931), and herein referred to as
the T mode, has been shown to be experimentally observable. Also, for multi-layer, and in
general asymmetric flows, the bulk Richardson number is insufficient to describe the properties
of the instability observed. It is necessary to know the relative depth of the Intermediate layer
as well as the extent of the asymmetry in the velocity and density fields to fully describe the
flow and predict the properties of the instabilities. The T mode appears to have little effect on
the amount of mixing within the flow, and the principal mechanism by which fluid is exchanged
between the intermediate layer and the other two layers is through the cusping of the density
interfaces due to the regions of overturning associated with the Holmboe type instabilities. This
mixing can occur for bulk Richardson numbers in the range 1.03 < Rio _< 2.83, and so it is
necessary to be cautious In the parameterisation of mixing efficiencies of shear flows in terms
of the bulk Richardson number alone, as the structure of the density field appears to have a
significant qualitative effect on the mixing properties.

A three layer flow is susceptible to multiple simultaneous instabilities even when the pre-
dicted growthrates of the various observed modes vary by more than one order of magnitude.
The ability of the various types of unstable structures to simultaneously grow to finite amplitude
has been demonstrated, but as yet Is not well understood.

We put forward two possible explanations which will be the subject of future work. Firstly,
since the T modes and the Holmboe type modes appear simultaneously at times when typically
the wavenumber of the T mode is appreciably larger than that of the two Holmboe type modes,
there is the possibility, as mentioned in Caulfield (1994), of the three different types of instability
forming a resonant triad (see Craik 1985 for a review). However this needs to be verified by
direct calculation of not only the resonance conditions, (namely that the sums of the Holmboe
type waves frequencies and wavenumbers are equal to the frequency and wavenumber of the T
mode) but also of the interaction coefficients. Alternatively, since the modes develop finite am-
plitude structures in widely separated regions, It is possible that each mode can develop to finite
amplitude in a manner largely independent of the other modes. However, a nonlinear analysis
must be conducted to investigate properly the multiple modal structure at finite amplitude, as
well as the (observed) different mixing effects of the instabilities.
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Two-dimensional secondary Instabilities
in a stably-stratified shear layer
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1.Introductinn
The buoyancy force in a stably-stratified fluid medium, if strong enough, compels the flow to
organize into quasi-horizontal structures. Evidence of such a horizontal layering has been clearly
shown in geophysical flows (e.g. Dalaudier et al. 1994 for the atmosphere, Gregg 1987, for the
ocean), in laboxatory experiments (e.g. Browand et al. 1987) and in numerical experiments
(Herring and Metais 1989, Bouruet-Aubertot et al. 1994). These layers, which are only weakly
correlated along the vertical, may slide the one over the other and thus generate velocity shears.
If instability criteria are satisfied, these velocity shears may yield instabilities of the Kelvin-
Helmholtz type and possibly trigger a turbulent behavior in the flow (Bouruet-Aubertot et al.,
1994). Why and how do these layers become unstable is still an open question since they are
embedded in a complicated flow and coexist with internal waves. The purpose of the present
study is to analyse numerically on a simpler flow, a two-dimensional stably-stratified shear
layer, the occurence of such secondary instabilities.

The two-dimensional homogeneous shear layer has been extensively studied (see Corcos
and Sherman 1984 and Ho and Huerre 1984, for a review). Once the Kelvin-Helmholtz
instability has developed and ,aturated, the initial vorticity, confined in a horizontal strip, has
moved into equidistant vortices aligned along the streamwise direction, separated by quasi-
irrotational flow (the braids). These vortices may then pair. When a stable stratification is
present. the structure of the flow changes fundamentally as the instability develops. The reason
is that a source of vorticity now exists, provided by the baroclinic torque of the flow. Our study
will be conducted in the Boussinesq approximation. In this case, the baroclinic torque reduces to
the curl of the buoyancy force and, therefore, solely involves gradients of the density field. As
the Kelvin-Helmholtz instability develops, the horizontal density gradient generates vorticity of
the same sign as the vorticity of the mean flow in the braids and partly destroys the vorticity of
the cores. Consequently, thin tilted layers of intense vorticity form in the braid region, separated
by weakened vortices. We shall refer to these thin layers as "baroclinic layers".

Such baroclinir layers have been observed in the atmosphere (Gossard et al. 1970), in the
ocean (e.g. Woods 1969, Thor 1987), In laboratory experiments of stably-stratified shear
layers (for instance Delisi and Corcos 1973, Koop and Browand 1979, Schowalter at al. 1993)
and in two-dimensional numerical simulations of stably-stratified shear layers (PaMaik et al.
1976, Corcos and Sherman 1976, Klaassen and Peltier 1985a, 1985b, 1985c, 1989, 1991,
Staquet 1991). All these authors have predicted, either with heuristic arguments or on a theore-
tical basis, that these layers could become unstable and bear a secondary Kelvin-Helmholtz
instability. Such secondary instabilities have been clearly shown to occur in Staquet (1994a,
1994b). In these latter two papers, high resolution two-dimensional (as well as a few three-
dimensional) numerical simulations of the Navier-Stokes equations in the Be-ussinesq approxi-
mation are presented, for a shear layer with either moderate or strong stratification. For the
present extended abstract, we shall focus on strongly stratified two-dimensional flows. We shall
show that the stability of the baroclinic layer is controlled by the large scale Kelvin-Helmholtz
vortex, via the strain field that it induces in the stagnation point region of the layer. A
consequence of this study, clearly illustrated here, is that, in a strongly stratified shear layer,
secondary Kelvin-Helmholtz instabilities are fostered by the pairing of primary Kelvin-
Helmholtz vortices.

I, Mathematical model and numaeral method
The Navier-Stokes equations are solved in the Boussinesq approximation in the two-dimensional
vertical (x,z) plane, with z directed along the vertical direction:
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xV is a stream function related to the velocity field by: uu-O-/8z. wziii/ax. co=(Vxu).lY is the
spanwise vorticity component (iy being the urit vector along the y direction); (o is related to xV by:
wo-AW. g is the modulus of the acceleration of gravity and v and K are respectively the molecular
viscosity and the diffusion coefficient for density changes. We decompose the density field as
p(xz,t)mp(z,t)+p'(xz,t), where p(z,t) is the mean density and p' is the deviation from the mean;

in the Boussinesq approximation, P+p'"p0, Po being the density of an hydrostatic basic state,
For boundary conditions we assume that the flow is perijodic in the streamwise direction,,

and at the horizontally oriented boundaries take free-slip conditions on the velocity.
As in Patnaik et al. (1976), the mean velocity and mean density profiles at tWO are defined
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at the lower and upper boundaries respectively, while p0+Ap/2 and p0-Ap/2 (with Ap>O)
denotes the corresponding densities. 8i is half the initial vorticity thickness of the shear layer,
defined by U/(dUi/dz)max. Pray/K is the Prandtl number.

No density perturbation is superposed upon the mean density profile at t=O, while a
deterministic perturbation is added to the mean velocity profile. Its vertical dependency is the
eigenfunction of the Rayleigh equation (linear stability equation for J3O). Its streamwise
dependency is sinusoidal, because of the periodic boundary conditions, with wavenumber equal
to the fundamental (most unstable) wavenumber predicted by linear stability theory for J=0, kf
say. kf1 i=0.439 in the present case.

Equations (2- 1) are solved numerically in nondimensional form. The length and velocity
scales are 81 and U respectively and time Is nondimenslonalized by the advective time scale
8i1U. The density is scaled by MFp/2. With this scaling, the nondimensional parameters which
come into play in the equations are: Re, the Reynolds number, initially equal to UWI/v; the
minimum of the gradient Richardson number (or minimum Richardson number) , whose

excpression at t-O is J m= ' [dpI (dU )2] = 2 E 8L and the Prandtl number. In the
e PO d' dz PO 2 U2

calculations presented here, J and Pr are kept to a fixed value, equal to 0.167 and 0.7
respectively, while Re is varied between 400 to 3000.

Equations (2-1) are solved using a standard pseudo-spectral method (Canuto at al. 1988),
Aliasing errors are removed by a truncation method. The viscous terms are computed explicitely
while a third-order Adams-Bashforth scheme is employed to advance in time. More detail about
the numerical method can be found In Staquet (1994a). Computations up to 10242 have been
performed on a Cray C98, at the Computing Center of CNRS.

I11. Formation of secondary Instabillties In barnelinic layer.
Visualizations of the shear layer at the time the vorticity has reached an absolute maximum is
displayed in figure 1, for different Reynolds numbers. The structure of the Kelvin-Helmholtz
vortex opposes that of the baroclinic layer. The vorticity varies smoothly inside the vortex and is
associated with a complex density field, due to the roll-up of heavy and light fluid when the
instability develops. Statically unstable situations then occur, with heavy fluid over light fluid. A
consequence is that negative vorticity is produced, by the baroclinic torque, in the upper (and
inner, by symmetry) boundaries of the Kelvin-Helmholtz vortex. By contrast, in the stagnation
point region of the baroclinic layer, both vorticity and density fields exhibit sharp changes across
the layer but almost no variation along the direction of the layer.

The behavior of the vortex when the Reynolds number is increased also opposes that of the
baroclinic layer. The vertical extent of the vortex remains unchanged as Re is increased; it can be
shown that this vertical extent Is in very good agreement with a theoretical model proposed by
Corcos and Sherman (1976) for the non linear development of the instability. As well, the
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maximum vorticity of the vortex (reached at its center) hardly varies from one calculation to the
other (,0.7 for Re=400 and -1 for Re.0O0).4

By contrast, the thickness and the vorticity of the baroclinic layer strongly varies as the
Reynolds number increases. To understand this, it is first necessary to recall the physical
mechanisms driving the evolution of the layer, a theoretical model of which was proposed by
Corcos and Sherman (1976). Upon the layer, in the neighbourhood of its stagnation point, acts
an outer velocity field induced by the large scale vortex, of the pure strain type. The advection
perpendicular to the direction of tho layei by this pure strain makes the thickness of the layer
decrease exponentially. Diffusion by molecular effects however opposes this compression action
and an equilibrium eventually sets in, whch dictates the thickness of the layer. This strain field
has a second effe,.t upon the layer, now through its component along the direction of the layer:
this component advects the vorticity of the layer toward the vortex cores. Here again, this effect
is balanced by a mechanism of generation of vorticity, due to the baroclinic torque. An
equilibrium eventually sets in, now along the direction of the layer, which yields a constant
velocity difference across the layer.

It has been shown in Staquet (1994a) that the strain rate of the outer strain field acting upon
the layer does not vary when the Reynolds number is increased (and is about constant in time).
Hence, the thickness of the layer reflects the scale at which viscosity is acting; thus the larger Re
is, the smaller the thickness, as Illustrated by figure 1. (A Re"Ia dependency is predicted for the
equilibrium thickness by the model of Corcos and Sherman, which agrees very well with the
behavior computed numerically (Staquet 1994a, 1994b)). As the Reynolds number is increased,
the vorticity of the layer at Its stagnation point strongly increases. The baroclinic torque is solely
responsible for this, since the vorticity is removed at the same rate whatever Re: as the thickness
of the layer decreases, the streamwise gradient of the density field increases, which produces
vorticity. (A Rett 2 dependenxcy is predicted for the equilibrium vorticity by the model of Corcos
and Sherman, which agrees again remarquably well with the numerical findings).

This behavior of the layer implies that the Richardson number at the stagnation point of the
layer, Ri, say, should decrease as Re is increased. Ris is plotted versus Re in figure 2 at the time
the vorticity reaches an absolute maximum (attained at the stagnation point of the layer). As in

Corcos and Sherman (1976), we define Ris as: Ris I -3 . s . Figure 2 shows that

Ris reaches very small values, as low as 0.04 when Re=2600. Supposing that the stability of an
inclined shear layer is the same of that of a horizontal one, linear theory and calculations by
Hazel (1972) predict that a secondary instability should occur if Ris becomes lower than 0.25.
Nevertheless, in the present case, the stagnation point of the baroclinic layer remains stable.

In figure 1, an ondulation is visible for the highest Reynolds number case, in the part of
the baroclinic layer that adjoins the region of the vortex where neqtive vorticity is produced. It is
at this location that a secondary instability first amplifies. This instability is not of the Kelvin-
Helmholtz type. Its subsequent development is visualized In figure 3, through constant contours
of the vorticity field. It amplifies while propagating (or while being advected by the local shear).
The origin of this instability seems to be clear: it grows where the positive vordcity of the
b-roclimc layer meets negative vorticity in the inner boundary of the Kelvin-Helmholtz vortex,
that Is, where a jet flow forms. It is not clear however, whether this instability is that of a jet
flow, because it has a strongly asymmetric vorticity and is embedded in a complex flow.
Moreover, the non linear development of this instability exhibits a stron* resemblance with
visualizations of critical layer experiments reported by Thorpe (198 l).This instability is refered
to as the "near-core" instability hereafter.

The advection of this instability toward the stagnation point of the baroclinic layer perturbs
the whole flow. In particular, a strong disturbance is induced at the stagnation point of :ie layer,
which triggers a secondary instability, now of the Kelvin-Helmholtz type (figure 3b).

IV. Influence of the outer strain field on the stAblilty of the laver
We shall now examine the intriguing stability of the layer in the neighbourhood of its

stagnation point, before the near-core instability develops. Two factors stabilize the layer there:
the non zero value of the Richardson number, of course, but also the action of the pure strain
field. Indeed, the strain field compresses any perturbation in the direction perpendicular to the
layer, thereby reducing Its growth rate; it also stretches any wavelength along the direction of the
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layer, therefore making its growth rate eventually go to zero. The-'e two effects of the outer strain
field are at the basis of the model of Corcos and Sherman menutmned above for the non linear
dynamics (and resulting structure) of the layer.

The stability of a uniform strip of vorticity in a perfect fluid, s,,bjected to a constant strain
rate, has been examined by Dritschel et al. (1991). The key parameter in this problem is the ratic
of the strain rate y over the vorticity of the layer Q. Dritschel et al. have shown that even a value
of YOt' as small as 0.065 leads to a three-fold amplification only of the perturbation. In this model
flow, the perturbation always decays to zero, after a possible amplification, no stable stiatifi-
cation is present and the fluid is perfect. The situation examined here is somewhat different but it
is still of interest to examine the behavior of eQ at the stagnation point of the baroclinic layer.

This ratio is plotted in Figure 4 versus time. yi/l decays once the layer has formed (from
tW15) and reaches very small values, equal to -0.03 for Re=2600 with Ris=0.045. This
suggests that critical values for the layer to become unstable, which have not been reached yet,
would be even lower. The smallness of these value.- would be consistent with the findings of
Dritschel et al.

If it is indeed the outer strain field that prevents the instability from occuring, then any
event making the strain rate decrease should permit t'ie development of the instability. A way to
make this parameter decrease is to move the stagnation point of the baroclinic layer away from
the Kelvin-Helmholtz vortex. Indeed, the strain rate is toughly proportional to the circulation of
this vortex and inversely proportional to the distance squared between the vortex and the
stagnation point of the layer. In Stauet (1994b), three calculations of a shear layer having
J=0.0836 and Rea 1000 have been performed, in which the wavelength of the initial perturbation
is progressively increased from the fundamental wavelength up to twicc this wavelength. The
streamwise extent of the numerical domain is equal to 2n over this wavelength so that only one
Kelvin-Helmholtz vortex develops. As the perturbation wlivelength is increased, the baroclinic
layer is shown to lengthen, progressively destabilize (bearing first the near-core instability) and
eventually, for the longest wavelength, a secondary Kelvin-Helmholtz instability develops. We
have computed the ratio y'/I for the three calculations. For the intermediate wavelength, where
the baroclinic layer remains stable, I/'Q is equal to 0.04, with Ri1=0.55. For the longest
wavelength calculation, OL-1-0.02 when the histability starts developing, with Ri,--0.07. These
three calaulations make clear the essential role of tihe outer strain field on the stability of the layer.

It follows that pairing should promote a secondary instability of the Kelvin-Helmholtz type
in the baroclinic layer. Indeed, in movins the one toward the other, the vortices move away from
the stagnation point of the layet. Their influence, and thus the induced strain rate, should
decrease at this location. This argument is supported in figure 5 by visualizations of a strongly
stratified shear layer with two primary Kelvin-Helmholtz vortices developing. A secondary
instability is shown to develop spontaneously at the stagnation point of the baroclinic layer,
without this part of the layer having been invaded by the propagating near-core secondary
instability. At the very most does the secondary near-core instability provide the necessary
perturbation, supposed to be small, to trigger the instability. The ratio V/il for this calculation is

plotted in figure 4 (curve e). y/O is shown to have the smallest value, equal to 0.02 (with
Ris=0.02, see figure 2). The same critical value for y/Il was found for an instability to develop in
a J=0.0836 shear layer.

V.£AnaIlog with three-diMennional turbulence
It is trne non conservation of the local vorticity that makes possible the succession of

secondary Kelvin-Helmholtz instabilities involving smaller and smaller scales observed in figure
5b: only because the stretched braid in between newly growing Kelvin-Helmholtz vortices is
baroclinically regenerated with vorticity, can the instability mechanism continue. This non
conservation of the vorticity is also a fundamental feature of three-dimensional turbulent flows,
even without body force. We now examine whether this fundamental analogy may give rise to an
analogous behavior. For this purpose, the dissipation rate of the total energy of the two-
dimensional stably-stratified shear layer is examined as a function of the Reynolds number for
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the series of one Kelvin-Helmholtz vortex calculations discussed above (J=0.167, Re varying
between 400 and 3000). 4

For a shear layer in the Boussinesq approximation, the dissipation rate of the total energy

ce- bc written as: E- = - -• (Z + Re.•Ep) with Re.E.p = - L .L Ap. Z = ((VAU) 2 ) is the
dt Re ' L2 Pr

volume-averaged enstrophy and Lz denotes the vertical length of the numerical domain. a, is the
dissipation rate of the potential energy, and is constant in the present case (supposing there is no
mass flux across the horizontally oriented boundaries). It follows that dE/dt is of the form 7*/Re,
where Z*=Z+Re.eEp is the usual enstrophy with an additive constant. This additive constant is
the same for all the calculations presented here.

Z* is plotted in figure 6a. It exhibits a first maximum at about t-48, whatever the initial
value of the Reynolds number. Up to this time, the maximum vorticity (over the numerical
domain) is always mached at the stagnation point of the bhroclirc lIer. It is thus this part of the
flow that controls the evolution of the total enstrophy up to t-48. Z continues to increase next
for Re;>1500, when secondary instabilities develop in the baroclinic layer. A second maximum is
reached at an instant independent of the Reynolds number. The value of this second maxiuum is
strongly dependent on the Reynolds number however Zad At is thus of interest to examine the
behavior of Z*/Re for ReZ1500. This quantity, equal to minus the dissipation rate, is plotted in
figure 6b. The second maximum of Z*/Re, reached at a time the flow has become turbulent
through secondary instabilities, seems to tend toward a constant value as the Reynolds number
increases. Such a behavior is analogous to that found for instance by Brachet (1990) when
studying numerically the temporal evolution of the enstrophy for the three-dimensional Taylor-
Green vortex (with uniform density). This suggests that the dissipation rate of energy becomes
independent of the viscosity in the limit of zero viscosity; in other words, this dissipation rate is
controlled by non linear effects in this limit.

Finally, we note .hat the analogy between two-dimensional Boussinesq equations and three-
dimensional equations for a fluid with uniform density has already been used by, e.g., Pumir
atiC Siggia (1992) in their search for a singularity of the three-dimensional Euler equations.

This study has focused on the development of secondary instabilities in the thin layers that appear
in a two-dimensional stably-stratified shear flow, in between the primary Kelvin-Helmholtz
vortices. We have shown that these large scale vortices control the stability of the layers, via the
strain field thit they induce in the stagnation point region of the layers. Consequently, pairing of
".Irimary voitices promotes the growth of a secondary Kelvin-Helmholtz instability. Because the
baroclinic torque provides a source of vorticity, the vorticity is not materially conserved in this
two-dimensional flow and analogy with three-dimensional turbulence can be drawn. We have
shown that a deterministic mechanism is at the basis of this analogy, consisting of successive
secondary Kelvin-Helmholtz instabilities transferring energy toward small scales. This view
contrasts with the usual processes leading to energy transfers in three-dimensional turbulence.

This fundamental approach of the flow dynamics should bc complemented by more applied
studies, turned toward oceanography. The succession of secondary Kelvin-Helmh-ltz instabili-
tie, at different scales is supposed to be one of the mechanism by which mixing occurs in the
ocean (Woods 1969, Thorpe 1987). It would thus be important to evaluate mixing in the present
simulations. Also, the statistical properties of the flow would be of great interest, by comparison
with spectra found either in the ocean or in the atmosphere.

Such a study is solely two-dimensional. In three-dimensional shear layers, intrinsically
three-dimensional instabilities occur, which may deeply modify this view of the flow, if weakly
stratified. It may be however that, for strong stratification, three-dimensional instability a ould be
mostly convective and occuring in the cores of the primary Kelvin-Helmholtz vortices
(Schowalter et al. 1993), thus inaffecting the dynamics of the baroclinic layers (except, possibly,
for the "rear-core" instability that we have found). This conjecture would nzed to be examined.
by performing very high resolution three-dimensional numerical simulations.
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Figure 1: Influence of the Initial Reynolds number Re upon the structure of the flow at the time the vorticity
reaches an absolute maximum fl,, (located at the stagnation point of the vorticity layer). d is the distance
between contour levels. Contours of constant vorticity. (a) Re=400. ilmaxu23., dm0.1:. (b) Rem 1000,
flm36 d=0.3, (c) Re-2600, 11=-. d=0.5. Associated contours ofconstant density: (d) to (f), with do0. 1.
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Figure 3: Development of secondary instabilities in a Rew2600 shear layer, Constant contours of the vorticity
at (a) t-56.9; nmax= 6, (b) 1t73; Imax,0 4.5. 0 max is the vortcity maximum. d (distance between contour
levels)=0.5. The arrow points toward a secondary Kelvin-Helmholtz vortex developing at the stagation point of
the baroclinic layer.
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C" large scale Kelvin-Helmholtz vortex in the stagnation

point region of the baroclinic layer. Q is the vorticity
of the layer. In all calculations except for curve (e), only
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Figure St Development of secondary instabilities in a Ren2000 shear layer with two Kelvin-Helmholtz
vortices developing and pairing. Constant contours of vonicity : (a) t.42.7; nmax. 4, 8, (b) tU74: Gmaf 4.4.
0,&, is the vorticity maximum. The distance between contour levels is d=0.4.
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Figure 6: Strongly stratified shear layer with one Kelvin-Helmholtz structure developing. (a) Z' defined in
section V, versus time. (a) Re.400: (b) Re-1OO; (c) Re=IS00: (d) Re=2000; (e) Re-2600; (1) Rew3000, (b)
ZV/R, equal to minus the dissipation rate of the total energy, is plotted versus tme for RelSO00. Full line:
Rem 1500- Dash line: Ren2000: Long dash line: Rem2600; Short dash.long dash line: Re,.3000.
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Abstract

We Investigate the processes by which an accelerating stratified shear flow undergoes the tran-
"sition to turbulence in a sequence of experiments in a tilted tank. Using direct measurements
of the velocity and density profiles we observe that the Richardson number at onset of Kelvin-
Helmholtz type instability varies only slightly with the total density difference, or the Reynolds
nlumber, If tids is sufficiently high. However, we observe that the mechanisms by which the flow
undergoes breakdown are both complex and diverse, and suggest that the (non-dimensional)
total density difference and /or the ratio of the depth of the shear layer to the total tank depth
are importint parameters in the determination of the dominant secondary structures.

In general, inherently three dimensional, and relatively large scale, flow structures strongly
suppress the formation of larger scale vortices through simple pairing. Also, these large scale
three dimenaional structures appear to totally dominate the transiton to turbulence, and appear
to be much more significant in the breakdown of the flow than the small scale transverse con-
vective rolls theoretically predicted by Klaassen and Peltier (1985b), and subsequently oberved
by Thorpe (1985).

Subharmonic, quasi-two dimensional vortex transitions are observed, but these appear not
to occur just as simple pairings. For example, three vortices are observed to merge into a single
secondary billow, or two merge and the other persists, as predicted theoretically by Klaassen
and Peltier (1989). Three dimensional vortex merging (knots) of initially quasi-two dimensional
billows are also observed. Such knots are observed not only as palrwise transitions, as diicussed
by Thorpe (1985), but also single billows are observed to knot with both adjacent neighbours.
Also, billows are observed to bow during merging events.

Narrow streamwise vortices (tubes) are also observed, and they appear to have two distinct
generation mechanisms. Firstly, they are observed to develop as secondary structures between
quasi-two dimensional billows subsequent to billow roll-up. Also, particularly at larger density
differences, or when the shear layer is sufficiently narrow compared to the total tank depth, we
also observe billows that never fully develop across the tank, but rather bifurcate into a "Y"
shaped structure. The two arms of the "Y" align in a streamwise direction, and wrap around
neighbouring billows in a similar manner to secondary tubes, however we postulate that in a
fundamental sense these "Y" shaped structures are a primary instability of the flow.

1: Introduction

Stably stratified shear flows occur in many geophysical flows of interest, and the processes by
which such flows become unstable, break down and (potentially) mix the fluid has been a topic
of much research (see Thorpe 1987 for a review). It is well known, from a theorem due to Miles
(1961) and Howard (1961) that if the gradient Richardson number, Ri, (a measure of relative
importance of the buoyancy forces to the inertial forces) defined as

Ri f (gdp/dz)
po (d T/dz) 2 

' (1)
1t



where p and t are the background distributions of density and velocity respectively and P0 is
some reference density, Is greater than 1/4 throughout the flow, then the flow is stable to linear,
normal mode type perturbations.

Theoretical analyses (see Drazin and Reid 1981 for a review) have concentrated until re-

cently on the linear, two dimensional, instability of inherently two dimensional background
states which violate this condition. This approach can be motivated by a theorem due to Yih
(1955), which Is essentially a generalisation of Squire's Theorem (1933) to stratified flow. A
potentially unstable mode whose wavenumber vector is oriented at an angle to the mean flow
can be identified with an equivalent mode with wavenumber vector parallel to a mean flow with
a higher Richardson number. Thue if the maximal (at given Ri) growthrate of a mode increases
at a sufficient (well-defined) rate with Ri, YIh's theorem predicts that the mode travelling at an
angle will, within linear theory, have a larger growthrate than all modes travelling parallel to a
given flow. In this case, the flow may be primarily unstable to three dimensional disturbances.
Since, in most flows (though not all, see e.g. Caulfield 1994) the effect of increasing stable
stratification (and thus Ri) is stabilis:ng on the flow instability, the reasonable expectation is
that the primary instability of a parallel stratified shear layer will be largely two dimensional.

Many experiments (e.g Thorpe 1968, Yoshida 1977, Koop and Browand 1979, Lawrence et
al. 1991) have demonstrp.ted that various flows with sufficiently small Ri somewhere within the
flow do indeed exhibit primary two dimensional instabilities of varying kinds, predicted relatively
well by linear theories. An important parameter In the character of the instability appears to be
the ratio of the characteristic langthscale of velocity variation to the characteristic lengthscale
of density variation. If the depth of the region of density variation is very much smaller than
the depth of the region of velocity variation then the primary instability is of Holmboe type,
with counter-propagating cusped waves appearing on the density interface, manifestations of the
existence of a regions of concentrated spanwise vorticity regions above and below the Interface,
This instability has no analogue in the unstratified shear layer, and is not as well understood
as the instability which appears when the velocity and density distributions are approximately
matched. In this case, analogously to the unstratified flow, the shear layer rolls up into spanwise
tubes of vorticity (the so-called Kelvin-Helmholtz billows).

Two dimensional numerical simulations of such flows exhibit well-defined vortex roll-up, and
after the vortex has equilibrated, some mixing onsets in the core due to the statically unstable
density field which developes (see e.g. Klaassen and Peltier 1985a). However, a single Kelvin-
Helmholtz billow does not appear to break down vigorously. In two dimensions, much more
mixing appears to take place during secondary subharmonic transitions, when billows merge
(see Klaassen and Peltier 1989). Though this is usually referred to as vortex pairing, other
transitions (e.g. 3 -- 2 or 3 - 1) were predicted and numerically simulated, and so we prefer to
use the term vortex merging to describe this process.

Nevertheless, as discussed in Klaassen and Peltier (1985b), any attempt to characterise
the onset of turbulence purely in terms two dimensional theoretical and numerical calculations
must be treated with extreme caution, as the evidence from the laboratory Is that the onset
of mixing is inherently linked to the onset of three dimensional motions within, and between,
several billows which have developed across a streamwise extent significantly larger (and in a
real sense less constrained) than a typical numerical domain.

Billows, as discussed by Thorpe (1987) are subject to a variety of secondary instabilities.
On a small scale, there is the convective shear aligned instability predicted in Klaassen and
Peltier (1985b). However, as mentioned by Thorpe,

"the appearance of (these) secondary patterns in the billows does not signal an imme-
diate transition to tuibulence."

Also observed by Thorpe in his now classic tilted tank experiments are "tubes", thin streamwise
tubes of vorticity communicating between two billows, and "knots", which he described as three
dimensional pairing events, in the sense that the billows do not pair simultaneously across their
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whole width.

An understanding of these transitions both in their efficiency for mixing, and their depen-
dence on the background parameters is extremely important. Thorpe identified the Reynolds
number, which we shall define as

Ud
Re , (2)

where U is half the total velocity difference within the flow, d Is half the shear layer depth, and v
is as usual the kinematic vorticity of the fluid under question, and the bulk Richardson number,
Rio defined as

Rio = gAd (3)

at onset of the instability as being important parameters, as one expects of course that for small
Re, the effect of viscosity will be to inhibit the development of the small scales necessary for
the full development of the turbulence, or even Inhibit the growth of primary and secondary
instabilities. Here, A is defined as

A = (P - Po) (4)
(PI + P0)

where P1 is the maximal density within the flow, and po is the minimal density within the flow.
We note that, in a sense, A Is a nondlmensional expression for half the total density difference
within the flow.

In this paper, we attempt to investigate further the routes by which a stratified shear
layer undergoes mixing In a three dimensional manner, by means of discussion of a sequence of
new tilted tank experiments, largely in the region of parameter space suggested by Thorpe to be
susceptible to a wide range of three dimensional instabilities. We wish to investigate the possible
importance of other nondimensional parameters which naturally arise in these experiments, In
particular, two parameters which a careful consideration of theory suggests may be important are
the ab,)ve mentioued A, and the ratio, D of the shear layer depth to the total tank depth. The
reason that we are interested in the nondimensional density difference is that it appears, not only
in the definition of the bulk Richardson number Rio, but also In the definition of the Rayleigh
number associated with the convectively unstable regions in the billow core (see Klaassen and
Peltier 1985b). We are also interested In the effect of variation in the ratio D because of the
effect that that variation in the shear layer depth has on the dimensional wavelength, and
core diameter of the billows which appear. Clearly, If the primary billows which appear are too
large, the boundaries will suppress merging mechanisms which are characterised by large vertical
displacements of the billow cores. Of course, variation in D, all things being equal, unavoidably
causes a variation in Re too, so one must be extremely careful in the interpretation of the effect
in variation of any one parameter.

2: Experimental procedure

We conducted several series of laboratory experiments using a tilting tank, similar to those used
by Thorpe (see e.g. Thorpe 1968, Thorpe 1985). The tank is 3 metres long, 30cm wide and 15
cm deep. Our visualisation and filling procedures were different from Thorpes however, and we
thus describe them here. First we filled the tank to depth of 7.25cm with a precisely measured
volume of salty water with varying amounts of salt added by volume (we conducted experiments
in the range of 2 g 1-1 - 200 g 1-1). For these values, we thus were able to scan values in A in
the range:

7.914 x 10-' < A 5 4.776 x 10-2 .

For the visualisation experiments, we then added a small quantity of Fluoresceln (Uranine or
C2oHioNa202), and then vigorously and repetitively tilted the tank until st:ch time as the
contents of the tank were well-mixed to a density Pl. A small (, 20ml) sample was then taken,
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which was used to subsequently calibrate the conductivity probe measurements, and to obtain
a highly accurate value for A.

We then tilted the tank at an angle of approximately 250 and introduced, at a very slow
rate, a volume (4.51) of salty water, which was dyed blue for the visualisation experiments, at a
density, p2, where

p2 = (p, + po)/ 2 ,

i.e. the mean of Pl, the lower layer density and Po the density of fresh water. This volume of
blue salty water is equivalent to a depth of 0.5cm of the tank. The filling rate was controlled
to be sufficiently slow to suppress visible mixing between the fluid of density P2 and the fluid of
density Pl.

Finally, we filled the tank with fresh water at room temperature with density po, initially
at a slow rate to once again suppress visible mixing between the fluid with d-nr'ty P0 and the
fluid with density p2. Since the density differences, especially with the low salt concentrations,
were extremely small, the temperature of the fresh water nspd in the upper layer was carefully
monitored. Once the tank was filled, it was slowly tilted back to the horizontal, once again every
effort being made to minimise mixing.

The fluid in the tank was then left for varying amounts of time, to allow the region over
which the density varied to take on different values. Just before the experiment a profl]' of
density wu taken using a conductivity probe, and a profile of temperature was taken at the
midpoint of the tank. The temperature was measured to an accuracy of 0.1 0C, and the variation
from top to bottom ranged from a few tenths of a degree for the experiments with small values
of A to about one degree for the experiments with larger values of 4. Density and temperature
profiles for a typical experiment are shown In figure 1.
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Filure 1: a) Density proe Land b) temperature profile for a typical experiment (here A = 3.4129 x
10-3).

Note that the density varies in a very smooth, and approximately linear fashion from p,
to P0, and no record can be seen of the intermediate layer in the density field, though It is still
very clear in the flow visuallsations, This Is not at all surprising, since the entire filIng.process
took several hours typically. Fitting a line, matched to the density gradient at the midpoint of
the tank, we were able to define a characteristic scale of density variation h defined by

i (z = midpoint) = (Po - PI)
dz- 2  2h()

and so h is equal to the half depth of the region of significant density variation. We also note that
this profile is close to the error function profile assumed by Thorpe (see e.g. Thorpe 1985). We
conducted a series of experiments to test the postulated velocity distribution discused at length
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by Thorpe in the appendix of his 1985 paper (essentially the viscous velocity profile arising from
the density driven flow), by particle tracking aluminium particles by means of photographic
streaks. Good agreement was found, and so we feel confident In using his expressions for the
various flow parameters, namely R, the ratio of the velocity scales to the density scale, D the
ratio of the shear layer depth to the tank depth, Re and Rio at instability onset. In figure 2, we
plot experimental values of R, D, A and Rio against Re. Experiments with tilt angle co = 7.50
are denoted by a cross, and experiments with ao = 10.8* with a circle. Note that .Re increases
with A, but not uniformly. Several values of very similar A have quite different Re, which can
be attributed to the fact that these experiments were started at different times after the filling
was complete, and thus had varying values of h and D.

1.8 1 a 0 .1 o 6ba b

LA e0.14

1.3

1.1 o a '0.10 a

S, , , ',...

oo.o 000.0 100.0 1400.0 ,o0.0100110 600.0
00 CO 15.0 4i.O1000. 1400.0
Re Re

0.05 0.095 SId
0.04 0.085

0.03 3 0.0F ,

0.02 0.065 -

a A

0.01 0.0585

0.00 a .a 0.045 L
100.0 600.0 1000.0 1400,0 20C.0 600.0 1000.0 1400.0

Re Re

Figie 2: Experimentally meunted value. of a) R; b) D; c) A; ad d) Rio plotted against Re. Experiments
with 00 = 7.5° me denoted by a cross, sad experiments with ao = 10.8* with a circle.

The ratio R of velocity scale to density scale is equal to

R 1+ Yi+ -Vto/h (6)
2

where to is the time from tilt to instability onset. For our experiments to varied from 3,2 to
41 seconds, while R varied from 1.05 to 1.4. In general R decreued as A Increased. We note
that this Implies that the shear layer depth Is typically larger then the density layer depth, but
of the same order, and so Holmboe type instabilities are not expected, nor are they observed.
Thus the ratio D of the shear layer depth 2d to the total tank depth L in terms of measurable
quantities is

D = 2M •L. (7)
5|



The Reynolds number at onset is

Re = gARhto sin o0, (8)

where a0, as mentioned above, is the tilt angle. In all the experiments, foe simplicity we tilted
the tank, and then left it at that angle. Though this means that the flow continues to be
accelerated, we believe that the values of the angle cto which we chose were sufficiently small
(in general 0o = 7.5*, though some of the experiments at smaller A had Go = 10.80) so that
the acceleration was sufficiently small for the flow unsteadiness to not invalidate our results,
yet sufficiently large so that secondary instabilities onset before end effects intruded. The final
parameter of interest is the bulk Richardson number Rio at onset, defined as

Rio = R2 h cos ao

A tSino (9)

As can be seen In figure 2, onset values of Rio and Re were In the ranges

0.049 !5 Rio < 0.01 .
300 < Re <_ 1400,

respectively. There did not appear to be any trend in the relationship between Rio and A,
though Rio was smaller for approximately the same 4 for the experiments with larger tilt angle
ao. Also Rio seemed to be largely de-correlated from Re

3: Experimental results
Since we are principally interested in the processes by which large scale breakdown of the flow
occurs, we designed the experiments to highlight the processes by which the billows broke down,
and so we did not concern ourself with the visualisatlon of the small scale streamwise convective
rolls predicted by Klaasien and Peltier (1985b), Using a camera mounted above the tank, on
the supporting frame which tilted with the tank, we videotaped the visualisation experiments.
A mirror was aligned so that both top sad side views of the central 70cm of tank were recorded.

Also, since we were Interested In the mixing efficiency of the various Instabilities we also
measured the density of the fluid using the conductivity probe after the experiments. As a
control, we also measured the density profile after an experiment which did not become unstable
before end effects were clearly significant. The characteristics of the profiles for both stable and
unstable tilted tank experiments were largely similar, and thus we believe that mixing efficiencies
extracted from experiments of this type should be treated with extreme caution, as the final
profile appears to be totally dominated by the sloshing overturning at the end of the experiment.

Within each experiment, in general we observed the development of billow type structures,
perhaps some process of three dimenslonalisation, and, If so, then rapid breakdown. For the
smaller values of A and Re, and thus larger values of D and R, we observed relatively long
wavelength billows which paired in a largely two dimensional manner, and indeed in some
extreme cues, did not pair at all. However, as D decreased, and A increased, the behaviour
changed maxkedly, even between experiments with very similar transition Re and Rio. As
the wavelength of the billows decreased, billows ceased to be aligned perpendicularly to the
background flow. For intermediate values of A and/or D, typically the billows would develop
across the entire width of the tank, but be bent. A thin tube of streamwlse vorticity would
develop between the points of greatest curvature on two billows, which clearly was associated
with the rapid breakdown of the billows. Typically this secondary instability did not suppress
pairing, and it would only become apparent some time after the primary billows had become
well-developed. We believe this is the secondary "tube" discussed by Thorpe.
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As A increased, for the smaller values of D, the bends in the billows became more pro-
nounced, and a new phenomenon occured. Over a certain extent near the middle of the tank,
one side N billows would start to form, while on the other side N + 1 billows would appear with
a very similar wavelength. We would suggest two possible causes for this new phenomenon.
Firstly, unavoidably the velocity and density fields are not uniform throughout the tank, and so
the particular background conditions susceptible to shear flow instability vary within the tank.
Thus slight variations in the conditions would suggest that even for the same nondimensional
wavenumber predicted by linear theory, the wavelength of that instability, when manifested at
finite amplitude would vary from place to place. Alternatively, as is well known, the variation
of growthrate for Kelvin-Helmholtz instability with wavenumber is relatively weak, and so, in a
long tank a competition between two close wavelengths which both are commensurate with the
length of the tank is, at least theoretically, possible.

Whatever the cause, (and slight imperfections at the sidewalls cannot be discounted) a billow
structure would appear which did not extend across the entire width of the tank. Sometimes
this fragmentary billow would rapidly mergc with the nearest portion of a fully developed billow.
Alternatively, as mentioned in the abstract, the billow would form a "Y" shaped structure. The
two arms of the "Y" align in a streamwise direction, and wrap around neighbourlng billows in a
similar manner to secondary tubes. However the "Y" type structure appeared to onset earlier in
the flow, before the billows were very well developed, and so we postulate that in a fundamental
sense these "Y" shaped structures are a primary instability of the flow.

Of course, with both these structures (namely the tubes and the "Y" shaped billows), billow
merging typically did not proceed in an orderly two dimensional fashion. As discussed by Thorpe
(1985), "knots" appeared in the sense that billows did not merge uniformly across the entire
tank width. Unlike Thorpe, we were not able to identify a decrease in the likelihood of knots
with increasing Re, and indeed It appeared to become more prevalent as D decreased. This may
be because as D decreases, and hence the lengthscale of the billows decreases relative to the tank
depth, it is reuonable to assume that the sidewall effects are becoming less significant. Because
we varied A, reduction in the depth 2h of the region of density variation did not necessarily
mean that the Reynolds number Re was also reduced. The "Y" shaped structures would rapidly
cause the neighbouring billows to break down.

Another observed knot structure involved a three billow interaction. The middle billow
would start to merge with the two outer billows simultaneously, and thus would be aligned
diagonally between the two outer billows. The two outer billows would start to merge, with
the middle billow being engulfed by the process. This process appeared to occur for small
wavelength billows (i.e. when D was small or A was large). This merger event appeared to
require quite large vertical deflections of the billow cores, and since the billow core diameter
is generally proportional to the wavelength, small wavelength billows appeared to have enough
"room" to undergo this transition. Finally, it is important to mention that knotting not only
occured through merger being initiated near to the sides of the tank, but also on occasion two
neighbouring billows would bend towards each other and merge in the middle of the tank with
widely separated ends.

These three dimensional merging events appeared to preclude the formation of well or-
ganised quasi-two dimensional vortices which were observed to appear during the quasi-two
dimensional merging events. Even in two dimensional merger however, it would not, in general
be correct to describe the observed behaviour as pairing, as three billows merging simultaneously
in a quasi-two dimensional manner was observed "s well, as theoretically predicted (Klaasen
and Peltier 1989).

41 Conclusions
An attempt has been made to investigate and describe qualitatively the possible large scale three
dimensional Instabilities. Provided the scale of the billows is sufficiently small relative to the tank
depth a rich variety of three dimensional structures appear which do not appear to be a strong
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function of Re or Rio at onset. Of particular interest is the formation at the first apparent stage
of onset of imperfect billows which do not extend across the entire width of the tank. The rich
variety of three dimensional transitions preclude the efficient formation of subharmonlc larger
scale vortices, and in our experiments the simple primary development of two dimensional billows
which "pair" was one, rather special, possibility amongst many for the transition of a shear layer
to vigorous mixing. Further experimentation and numerical simulation are necessary, tfr we still
are an extremely long way from being able to plot a transition diagram for stratified shear flows
analogous to that drawn by Busse (1981) for Rayleigh.Bernard convection (see Thorpe 1987 for
a fuller discussion). We seemed to observe the Importance of a further parameter of importance,
namely the ratio of the shear layer depth to the tank depth, or alternatively the nondimenslonaLI
donsity difference, further complicating our task. To make matters worse, throughout we have
not concerned ourseleves with the Prandtl number, which in real geophysical applications is
likely to be important.

5: References
Busse, F. H., 1981: In "Transition and Turbulence," ed. Meyer R. E., Academic.
Caulfield C. P., J. Fluid Mech. 258 255-285 (1994).
Drauin P. G. and Reid W. H., 1981: "Hydrodynamic Stability," C. U. P.
Howard L. N., 1961: J. Fluid Mech. 10 509-512.
Klaasen G. P. and Peltier W. R., 1985a: 3. Atmos. Scl. 42 1321-1339.
Klausen G. P. and Peitler W, R., 1985b: J. Fluid Mech. 186 1-35.
Klausen G. P. and Peltier W. R., 1989: J. Fluid Mech. 202 367-402.
Koop C. G. and Browand F. K., 1979: 3. Fluid Mech. 93 135-159.
Lawrence G. A., Browand F. Y. and Redekopp L. G., 1991: Phys. Fluids A 3 2360-2370.
Miles J. W., 1961: J. Fluid Mech. 10 496-508.
Squire H. B., 1933: Proc. Roy. Soc. A 142 621-628.
Thorpe S. A., 1968: J. Fluid Mech. 32 693-704.
Thorpe S. A., 1985: Geophys. Astrophys Fluid Dyn. 34 175-199.
Thorpe S. A., 1987: J. Geophys. Res. 92 C 5231-5248.
Ylh C-S., 1955: Quart, Appl. Math. 12 434-435.

I8

1~t



I

Stability of nonlinear stratified flow over
topography

T.R. Akylas, J. Ramirez & D. Prasad

Department of Mechanical Engineering
Massachusetts Institute of Technology

Cambridge, Massachusetts 02139, USA

Summary

We examine the stability to small perturbations of Long's steady. finite-amplitude
internal-wave patterns generated by stratified flow of large depth over topography.
Figure 1 is a schematic of the flow configuration. Far upstream (x - -oc), the
flow is uniform and the Brunt-Viisilh frequency is constant. Above the obstacle.
the flow is disturbed, and the higher the obstacle steepness, e, the more severe this
disturbance is. In fact, Long's steady-state theory predicts that for c > 0.85 the
streamlines overturn ('break') and the flow is expected to be statically unstable. We
examined the stability of these steady states for f < 0.85, using the asymptotic theory
of Kantzios & Akylas (1993). A small localized perturbation to the steady state was
assumed, and its development in time was followed by solving the governing evolution
equations numerically. Figure 2a shows the disturbed (dotted) streamlines for f = 0.5
at time T = 0.5, while Figure 2b shows the disturbed streamlines for the same value
of e at a later time, 7' = 2.0. Clearly, the disturbance is spreading out (dispersing);
the flow relaxes to the steady-state streamlines (continuous line), and there is no
instability. On the other hand, for e = 0.75 (see Figures 3a,b) the disturbance grows
and instability is present. The conclusion is consistent with the disturbance kinetic
energy shown in Figure 4 as a function of time for various values of (. The kinetic
energy grows for small time, owing to the interaction of the disturbance with the basic
flow, but later this interaction ceases and the kinetic energy approaches a constant
value when e < 0.7. However, when t > 0.7 the kinetic energy keeps growing as energy
is continually transferred from the basic flow to the disturbance. This instability is
due to the steepening of streamlines of tlhe basic flow as t is increased (shear-flow
instability); it occurs below the critical steepness for overturning predicted by the
steady-state theory and appears to be new.
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Observations and energetics of a naturally occurring
shear instability in a stratified flow

HARVEY E. SEIM AND MICHAEL C. GREGG

Applied Physics Laboratory, College of Ocean and Fishery Sciencex, University of Washington

Simultaneous profiles of microstructure, horizontal velocity, and acous-
tic backscatter are used to describe a naturally occurring shear instabil-
ity. A kilometer-long set of 20 m tall billows formed downstream of the
constriction in a tidal channel at the mid-depth interface of the approxi-
mately two-layered flow. The billows generate large density overturns and
dissipation rates greater than 10-5 Wkg- 1 within the first large over-
turn. The billows produce an actively turbulent well-mixed layer which
persists for more than 6 buoyancy periods. Using data from the large over-
turns within the shear layer, we find that /sIN2 ft 3 X 104. In addition,
the root-mean-square overturn scale, Lm, = 2.6 m, and buoyancy scale,
Lb = 2.7 m, are about equal. The decrease in mean kinetic energy is ap-
proximately locally balanced by turbulent production. This implies no net
radiation of energy into the surrounding fluid, but the large uncertainties
in turbulent production make this result tenuous. The flux Richardson
number averages 0.25, and the average momentum flux is 0.22 Pa.

INTRODUCTION profiles collected soon after the formation of
Though shear instabilities in stratified flows the billows with profiles collected several buoy-

cre thought to play a significant role in gen- ancy periods later.
crating turbulence and vertical mixing in the BACKGROUND
ocean and atmosphere (Gregg, 1987; Friitt and This study took place in Admiralty Inlet, a
Rastogi, 1985], few detailed measurements in a 3 km long, 70 m deep tidal channel connect-
natural setting exist. A number of radar im-
ages, sometimes supplemented with radiosonde ing the fjord-like estuary of Puget Sound to theor aircraft data [e.g. Browning et al., 1973] Strait of Juan de Fuca (Figure 1). Owing to
gave an initial description of clear air turb1- considerable river runoff into Puget Sound, a
fence in the atmosphere, and dye studies in the strong mean exchange flow exists in Admiralty
oceain theatmosphere , aWods, dye stueseal their Inlet, riverine water flowing seaward in the sur-ocean thermocline [Woods, 1968] revealed their face layer with a compensating inflow of denser
presence in the ocean, but comprehensive ob-waeatdphTofcorcmlitehsseratinsofistailtie, oera rngeofscaeswater at depth. Two factors complicate this
servations of instabilities, over a range of scales exchange flow in Admiralty Inlet: first, the 2 m
and which follow their evolution, do not ex- tides of the northeast Pacific Ocean make the
ist. We present simultaneous profiles of mi-acutc flow strongly time-dependent, and second, the
crostructure, horizontal velocity, and acousticrough bathymetry of Admiraly Inlet generates
backscatter collected over an hour in an evolv- rnal hydra ontrals Bot enets
ing shear instability. Though not comprehen- iinternal hydraulic controls. Both effects local-

sive, the observations permit an examination of ize intense mixing in space and time within the
the initial formation of billows, their transition Ilt

the nitil frmaton f bilow, tleirThe formation of the shear instability Ipre-
to turbulence, and a realization of the vertical The watio fte link tabtransien

mixing they produce. We also examine the en-

ergetics of the turbulent event by comparing hydraulic control off Bush Point (Figure 1).



temperature gradient measurements). A high-

K frequency echosounder measured profiler, of vol-
ume scattering strength every second. Echo-

• ,, 'sounder images proved invaluable in identifying
processes sampled with the other instruments.

j. Deta~ils of the instrumentation and processing
are given in Seim and Gregg [1994a]; Seim et al.
-19941.

- OBSERVATIONS

- Soon after high tide on March 28, 1988, we
began AMP profiling steaming north with the

4,,N current past Bush Point (Figure 2). A series
/ ... of wave-like features centered at 0.5 MPa ap-

peared on the echosounder roughly a kilome-
... . .ter downstream of the constriction (Figure 3).

5 ........ . . ,, We continued 2 km downstream until billows
were no longer obvious on the echosounder,

2,.50oW 45 4o 36 30 25 then turned the ship into the current to steam
L0%lug 0# upstream past Bush Point. The AMP could

Fig. 1. Bathymetry of Admiralty Inlet. The box not be recovered while making headway so we
shows were intensive measurements of the billows instead maintained our position while collect-
were collected. Note that, Bush and and Marrow- ing 10 more AMP profies, Fortuitously, the
stone Island for a pronounced constriction to north-
ward (ebbing) flow, tidal currents advected the billows beneath the

ship, allowing us to collect a second set of pro-
files through the billows later in their evolu-

Northward (ebbing) flow experiences a rapid tion. This is most easily seen by integrating
contraction as it passes by this locatior if the the velocity difference between the ship and
flow speed is large enough to rai... *he iter- 0.5 MPa, the pressure at which the billows were
nal Froude number above 1 'e~re centered. The resulting ship track relative to
u is the flow speed and c, is .. d the billows is shown in Figure 2c and demon.
of the gravest internal modle), the.. Pli' ýi:.milic strates that profiles 53-56 and 63-66 were col-
control will exist at thisE w *. . 'bser- lected in approximately the same positions iii
vations span the time whet- ,e flcw .t:ceier- the billows. We later compare these two sets
ated from speeds insufficient tu prodivi_ tr = I of profiles (from the downstream and upstream
to speeds well above this threshold (Seim and legs) to assess the energetics of the shear insta.
Gregg, 1994a]. bility.

The observations consist of measurements col- AMP profile 5852 (Figure 4a) shows condi-
lected with three instruments. An acoustic Dop- tions just before the billows form (Figure 3
pler current profiler (ADCP) measured the hor- shows the location of this profile relative to
izontal currents with 4 m vertical resolution the billows). The flow is two-layered with the
and horizontal resolution of roughly 60 In. The weakly-stratified layers separated by a strong
advanced microstructure profiler (AMP), a free- pycwocline. The upper lsyering moved 0.b 5 a s-r
falling loosely tethered platform, measured coin- faster than the lower layer. The vorticity thick-
ductivity-temperature-depth profiles with 0.1 hiess of the velocity interface is it % 10 ni.
in resolution and 0.5 m resolution profiles of rhough large, c is not associated with large
(, the dissipation rate of turbulent kinetic en- overturns of the density field near the pycno-
ergy, and -k, the dissipation rate of tempera- cline. This is apparent in the displacement pro-
ture variance (based on microscale shear and files (LI), which show how far water parcels in
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Fig. 2. a) Shading 'arks the sampling time on the tidal height curve. b) Location of AMP profiles
within the intensive sampling area. Shaded symbols denote profiles through billows or a mid-depth
mixed layer, and numbering indicates AMP profile. b,) Ship track relative to 0.5 MPs. In this coordinate
system profile 53-56 and 63-66 sample roughly the same position.

the observed density profile must be moved ver- aspect ratio of the billows is 0.14 using a billow
tically to produce a gravi tation ally- st able den- amplitude of 10 m, the macroscopic character
sity profile [Thorpe, 1977]. of the billows is similar to laboratory and at-

Conditions change dramatically by AMP pro- mospheric observations,
file 5854 (Figure 4b). This profile, which passes Downstream continuation of the billows is
through the first large billow on the echosound- apparent in Figure 3, but there is a substantial
er image (Figure 3), finds 20 tm of the density difference in the density of the billows. Figure 5
field overturned, and t > 10-5 W kg-' over compares contours of density with profiles of L,
the same depth range. Vertical motions within on the downstream leg. The pycnocline rises
the overturn strongly perturb the falirate (w) until billows form and large overturns occur. It
of the profiler, and their form closely matchetz then thickens and falls. Overturning, however,
the displacement profile. remains at the same pref sure and therefore oc-

Outer scales of the billows are similar to those, curs in progressively lest densse fluid, such that
in laboratory flows. Front the acoustic im- the large overturn in AMP 5857 is in weakly
age we estimate a billow wavelength of 70 m, stratified water above the pycnocline. The vari-
which with hs = 10 m yields a non-dimensional ations in height of the pycnocliie ar-e related to
wavenumber a = k(h/2) 2z 0.49. Similar a's the changing hydraulic conditions. The pycn-
are predicted for the most unstable mode by ocline movement changes the average density
linear theory [Thorpic, 1971] and have been ob-. at the biUo% s: Figure 5c shows pp, the av-
served in the atmosphere [Fritts and Rastogi, erage density 0.3 and (0.65 M11a. changes by
19H5]. Thorpe (1973] found trie aspect ratio or 0.3i kg m-3 over the section. Trhis time-de-
billows to decrease with increasing initial gradi- pendence prohihits interpreting the section as
ent Richardson number (Ri.), Forming a bulk a statistically steady realization.
Richardson number as Ri agAph/p(AU)", The upstream leg resampied the billows at a
we estimate an initial Ri,, 0.2 using 46p = later stage of their evolution. Using the event-
0.5 kg m-3 and AU(. = 0.5 tm s-1 . Given the averaged density profile to determine N21 :
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Fig. 3. Acoustic image of the water column during the hour the billows were observaed. Shading is
proprotional to the volume scattering strength, in decibels relative to I pPa at I m. The dark nearly
vertical lines are the estimated trajectories of AMP profiles.

I0-1 s-2, the upstream leg resamples the bil- Rohr el al., 1988] there is no indication the ra-

lows 4-8 buoyancy periods later. Surprisingly, tio of turbulent length scales provides a mea.

the billows are still actively turbulent. The sure of the stage of evolution of a shear insta-

buoyancy Reynolds number, Reb s e/vN 2 , is bility.
greater than 104, well above 2000 when an in-

ertial subrange of isotropic velocities is to be ea itios
expected [Gargett et al., 1984]. The impact the By comparing mean conditions on the down-
shear instability on the density field Is clearly stream and upstream passes through the bil-
seen in Figure 4c: a 20 m thick well-mixed layer lows we can quantify the the amount of energy
now splits the pycnocline and is associated with released by the instability. Comparing changes
intense dissipation, ion tem fields with the measured dissipa-

Some generalizations about the character of tion rates estimates the mixing efficiency.
the turbulence and mixing generated by the Because the flow is time-dependence we can-
billows are possible. Shear spectra from me- r data sections as snapshots of a

ters scales to dissipative scales are fit well by statistically-steady process. (The event varies

the universal spectrum [Panchev and Kesich, with time because of pycnochine movement as-

1969], indicating that simple theories of iso- sociated with establishing hydraulic control as

tropic turbulence are applicable within the ac- the ebb tide strengthens.) We instead adopt

tively mixing billows. The billows produces a a coordinate system moving with the billows,

mixed-layer of a single composition rather 'tan as defined in Figure 2c, and compute changes

a distribution of densities (Figure 6), This is at specific along-channel positions between the

consistent with the phenomonological model of two passes. By making our coordinate system

Broadwell and Breidenthal [1982] of high Reyn. nearly Lagrangian we minimize the importance

olds-number mixing layers and clearly points of advection in the energy balances, and by re.

out that the process cannot be represented by peating the comparison for a number of along-

gradient diffusion. Variations in Lvma, the rms channel positions we accumulate estimates tu

overturn scale, and Lb =_ (t/N 3 )1/2 , the buoy- improve our statistics.

ancy scale, track each other throughout the Cecreasing pp toward the nort (see Figure 5)

event. their ratio remaining near one over p- is also apparent in the upstmam leg (Figure

proximately six buoyancy periods [Seim and 7). The repeatability of the density structure
Gregg, 1994a]. Thus, contrary to the devel- between the two passes lends confidence that

opment of turbulence generated by grids [e.g. the coordinate systei follows the mean motion
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Fig. 6. Probability distribution of density in the (b). The decrease in go from south to north at
pycnocline before the billows form and 6 buoyancy 0.5 MPa is obvious in both sets. The pycnocline
periods after they form. The distribution is bi- changes from a single sharp interface to two smaller
modal before the instability, characteristic of an interfaces, separated by a well-mixed layer, between
interface, The action of the billows forms a sin- fuses.
gle miiode of water at an intermediate density, not a
range of density values, and cannot be modeled as
a gradient diffusion process. n is the thermal expansion coefficitnt; R, c

a(O2'/Oz)/((S/Oz) f -0.05 is the stability

where ratio; # is the hahine contraction coefficient;

TRE =< 0.5(3q2) > (5) pU Is a reference density; and g is gravitational
acceleration. The divergence of the energy-flux

P =< -UW-(O(u/0z) - ViwI(OV/8z) > (6) density vector tit (I), V Jk, accounts for un-

APEF =_< (1/2)[y/pN]2 p72 > (7) resolved energy-flux divergences, due to advec-
tion of ICE or pressure work (diffusion is as-

xp. =< [ga/N]2(1 + 1/R " > (8) sumed negligible). A similar term appears in

Jb (9 /Po) < w'p' > (9) (3). This divergence can be a dominant term
in the equations if non-local processes are im-

,1 portant to the dynamics. In (1) we make the
dV (10) standard assumptions that the viscous diasipa-

here KE is mean kinetic energy due to she-.r; tion by the mean currentj and the buoyancy

TKE is turbulent kinetic energy- BPE is back. flux due to the mean currents are negligible,

ground potential energy; APEF is available and in (2) and (4) we assume a local, tint-
potential energy of fluctuations; P is turbulent diependent balance.
production, coupling equations (1) and (2): and Equations (1) and (2) are standard forms

Jb is the buoyancy flux, coupling equations for the kinetic energy balance equations assum-

(2) and (4). Turbulent fluctuations are de- ing a Reynoldo decomposition. Equations (4)
noted with primes ('); q is the turbulent ve- and (3) are motivated by balance equations for
locity scale; Xp, is an estimate of the dissi. potential energy suggested by Winters ct al.
pation rate of potential energy, based on \: [1994] which rely on a three.dimensional sort-



Ing of the density field to define the compo- ... ,

nents of the potential energy, This decompo- ,
sition clearly identifies BPE as the only corn- . ... , i,
ponent that changes due to diabatic processes. ] ' " I ; "
Winers an.d DA..ro [1994] have shown that.
the conversion of available potential energy to z ... " ,,," '
BPE is equal to the volume-integrated value . .*, . ,o.
of \,.. Further, (3) demonstrates that Xp, is ...... ..

whereas (4) shows that the buoyancy flux is , in ,

indirectly related to changes in BFE. Only ..,

when the available potential energy is steady .. '... o
does the buoyancy flux equal Xpe.

Together, (1, 2, 3, and 4) form a set of con.
Sthat describe the energy bud- Fig. 8. Measured energy quantities as a functionstsentreltios hatdesrib te enrybd f along-channel position in the billows- following

get, i~e. when summed they show that energy coordinate system. Variations of (a) BPE and (d)
changes of a barocllnic flow are due to either KE are nearly mirror images. as expected if KE is
flux divergence or viscous dissipation. These the energy source and BPE the energy sink. The

equations describe the energy balance during instantaneous estimatesof(b) APEF and (e) TKE
vary widely with no obvious pattern remain much

nin ,Energy accuulates in the ve- smaller than the variations in KE. The dissipation
ume by flux convergence until WE exceeds the rates (c) •p, and (f) o are largest at the south end
work needed to overturn the density field. En- of the set, reflecting increased available potential

orgy is then lost to turbulent production, with energy when overturns are centered on the density
interface.

P being the source term for (2); energy is then
either stored as TICE, dissipated via c, or con-
verted to available potential energy through(increases) .
Jb, Finally, APEa b may be converted to BPE ter the billows form, consistent with It being a
through F . We estimaty e tonveagnitu of source (sink) of energy for the instability. The
the various terms with our observations estimates of APEF and TETE display no obvi-

Whe Intenionl dorms noth adrosesathens r ous trend, though Seim and Gregg [19914b] note
We intentionally do not address the energy the maxima correspond to likely pairing events,

budget of the barotropic flow. We assume that but are uniformly small, remaining an order of
the kinetic energy due to the vertically aver. magnitude smaller than the changes in KE,
aged flow and potential energy due to the ver- The dissipation rates tend to be greater to the
tically averaged density do not directly act as s iptio re tend to begter o the
sources or sinks for the shear instability and south, whtere overturning was centered on thetherfor exlud thni romtheenegy al-density interface. This suggests that r and ',,.

therefore exclude thee from the energy bal- reflect the increased available potential energy
ance. Though these components are important in these billows,
to understanding the forcing of the billows our Equations (1) - (4) are solved for Jb, P, V7Jk
observations are inadequate to address the full adqu at each( ofate seved f or where
,,nergetics of the barotropic flow because we and Vp. J at each of the seven locavtions where
have not measured the free-surface gradient. AMP profiles were collected. The averages ahd

With our observations we estimate c, TEE, deviations of all the terms are TE reseated in
ATE,)~p. AEF nd PE btwen aa ad Table 1. The changes in TATE and APEFIKE , X te, A P E F and B P E between 0.3 and a e n gi i l o p r d t n p n 2

0.65 MPa for each AMP profile. These pres- are negligible compared to s and lc pe and T2)
sure correspond to minima in average profiles and (4) collapse to steady, local balances. Theof turbulent intensity and justify a local hal- change in KR' is approximately balanced hy P,
ante of turbulent energy Plotting in a billows- indicating that little of the ATE released by the
following coordinate system reveals some ims- instability was radiated away as internal waves.follwingcoodinae sstemrevels ome hn-It is surprising, then, that xl).,/2 is only 25%
plie trends (Figure 8). On the downstream leg

A ' I,, _• _ _IIIiI lII I
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Abstract

For two layer flows, linear stability analysis predicts two types of instabilities: Kelvin.
Helmholtz instabilities which occur at small Richardson numbers and Holmboe instaliliti,%
which occur at larger Richardson numbers. Although growth rates of Holinboe instabilities
are much smaller than those of Kelvih-Helnholtz instabilities, Kelvin-Helmholtz instabilities
only occur for a small range of Richardson numbers and thus we would expect. Holmboc type
instabilities to occur more frequently. Here we study the effect of displacing the density inter-
face with respect to the velocity interface on the development, of a Holinboc, type inst.kbility.
In particular, we wish to determine how large this disxphternent nfict he before we only expect
to see one mode of the Hohlnboe instability. Results are compared to recent experiments where
Holmboe instabilities have been observed.

1 Introduction

We are interested in stratified shear flows for which the density interface thickness is much
thinner than the shear layer thickness. Hohnboe[2] was thle first to study such a flow. He
examined an inviscid flow with a discontinuous mean density profile (zero thickne,:s layer) and
a piecewise continuous mean velocity profile. For small values of the bulk Richardson iunailht,
J, linear stability analysis predicts a Kelvin.Helinhultz type of instability. chlaracteri zed by
zero phase speed. For sufficiently large values of J. lhwever. there arec two unstable zauds
of equal growth rate and equal but. opposite phase speeds. These are usually called Holniboe
instabilities.

Since Holmboe instabilities occur at. larger values of ,J than the well knzownc Kulvin.
Helmholtz instabilities, one would expect these types of instabilities to occur more frequently
in nature. Smyth[5] and Smyth et, al.[O] have numerically computed the nonlinear evolution
of a Holmboe instability giving us a good idea how the instability iany look. Also, Hohinboc
waves have been observed by Koop[3| (reproduced in part in Trit.ton and Davies[7j Fig 8.8).
and Zhu and Lawrence|10). Experimentalists have found, however, that Hohlnboo instabilities
are, in general, difficult to observe in the laboratory. Lawrence et. af.J4j have put forth a pos-
sible explanation for this. Holinboe's work assumed that the How is symmetric. This means
that in order for one to observe a Holmboe type inastability the center of the density interface
must coincide with the center of the shear layer. In many experimental situations this is
difficult to achieve. Lawrence et. al.(4] studied the effect of displacing the density interrace
with respect to the center of the shear layer, using the same profiles as in Holmboe's original
work. This displacement is characterized by the nondineulsional parameter e which is tho,
ratio of the displacement over half the shear layer thickness. As r increases, the two Hollbou,
modes split. The growth rate of one mode gets larger while the growth rate of the other gets
smaller. For c = 1.0 only one unstable mode is present. Yonemitsut8] and Yonernitsu et. al.[9]
studied the same effect for a viscous flow wit~h hyperbolic tangent. inean velocity proflh, and
discontinuous mean density. Similar splitting behaviour with ircreasizag e waA observed.



SLinear stability analysis indicates that. a non-synaunetric profile (C # 0) is one pussibh,
explanation for why Hohnboe waves are not always observed for large values of J. Unfortit. 4
nately, the value of e in a given experiment is difficult to measure(4] Also, lineatr sIld.iility
analysis does not give a clear indication of how the value of c affects the development or thi
flow, For this reason we will compute the nonlinear evolution or a flow for various vdiis of
E and compare our results with tOw experimetatal results or Lawrnive 0-. rd.[4], iad Za•m mail
Lawrence[10](see figure 1).

2 Linear Stability Analysis

Since our eventual goal is to compute the nonlinear evolution of a noni-syinmetric Holnhlbo
instability, we require smooth profiles. Thus we assume, as in Smyth[5). that the nondimen.
slonal mean velocity, U, and the nondimensional anean density, p,,, can be described in terms
of the hyperbolic tangent function.

U(6) - tanhhz } )
P.(8) -tan1, 1(Z+r) )

Here R is ratio of the shear layer thickness to the density interfac, thiick||ess and. a& above. r
is a measure of the distance of the center of the density interface from the ceiter of the shear
layer (see figure 2). Since we wish to model flows for which the shear layer thickness is much
larger than the density interface thickness, we want to choose R nUm larrge is possible, but smiall
enough to be able to compute without requiring too high a resolution, We have found R m 0
to be a reasonable choice.

In the simulation, dissipation is required for numerical stability. For this reamoii. we include
the effects of viscosity and thermal dissipation in the linear stability analysis. The i|por|'tnt
flow parameters are the bulk Richardson number. J. tdhe ,eynolds ntatmbr. Re. and thi'
Prandtl number. Pr.

Pr1. R - AUh U ph
K 2v' 2(611)21

Here v is the kinematic viscosity, K is the thermal diffusivity, and the other parameters are
as in figure 2, Smyth et. al,[0] have shown that, the influence of diffusion tends to drive flows
an described by (1) towards a state in which R a vf•, PFor this reason, we choose Pr =fi "
Also, in order to compare our results with the experimental results In [4) we use Rc 25.

Results of the linear stability analysis are shown ini figure 3. We see thitt for c = 0( they,
are, for a fixed value of J, two modes with equal growth rates. As c increases, thu. modes split
into two. The growth rate of the right-movinig anod1 , ihm'reUPSO whihl the grOwth mate HO tlw0
left-moving mode decreases, This is consistent with previous fiaadimgs[4, 8, 01. Onm import.ant
difference, however, is that the wavenumber at which the largest. growth rate voccurs gets iafrger
for the right-moving wave and smaller for the left.-moving wave as E increases. This is opposite
of what happens when the mean density interface has zero thickness, We lave found that thim
behaviour depends on both the value of the ratio R and the Reynolds number Re.

3 Nonlinear Simulations

In order to examine how a noti-symmetric ammean flow anffects the developimnewl of a Holhnho,
wave we numerically compute the evolution of such La flow. To this end, the' inonlinear equations



of the perturbations are used with the Boussinesq alppoxiimat.ion. We asumte that t hi III 1W i4

two-dimensional, allowing us t.o ust, a st.reatifuintior represent.ation.

(A40), + (U + u') (AV"), + w'U,, + w' (A , n) RiJpg + *&,,i,"'1 (2
P' + (U + ,')p', + 1,"(P. + 7,'), & 1'' (2)

In (2), the primes denote the perturbed quantities. It is assumed that the flow is periodic
in the direction of the flow (z-direction) and that the perturbations are zero at tile vertical
boundaries z - *H/2 where H is the total deptlh of tile flow. Behuilng ill mind tile results of
Hazel(l] we choose H = 10. Thus the computational domain is 0 < T < P and -5 5 z < 5
where P is the length of tile period ill tile r-direction.

The perturbations are initially given by the linear solution. As we see iin figure 3 the most
unstable modes for the right, anid left, moving waves occur at. different wave numbers wheni
r 0 0. If these modes were used to initialize tile flow, tile conliputationlll do(lanl would have
to be very large in order to maintain periodicity ill the i--direction. For this reason. the wave
number, a', at which the most unstable mode occurs (here it is the right moving wave) is
used. Thus the flow has period 2sr/c" and is initialized with the two most unstable linear
perturbations that occur at the wave number Wr. one with positive phaste' speed (moving to
the loft) and one with negative phase speed. We see from figure 2 that this inmpliesl a larger
difference between the two growth rates for a given vultle of r thani predicted by the linewt
analysis. Thus we are ovor-emnpliasizing the effect of c'.

Figures 4. 5 and 0 show the results of the nonlinear simulations for .1 I 0.3. J = 0.12
and J - 0.09. We see that for E = 0 there are two waves: one wave which prot-rudes int.' tohOw
upper layer and moves to the right and a second wav, which protrudes into the lower layer
and moves to the left, We also see that tile instabilities get. larger with decreasing J,! This
indicates that although the linear growth rate for J = 0.12 is larger thal for J - 0.09 (se,
figure 3), the effect of stratification on the nonlinear development, of the flow tends to damnp
the linear growth more for larger values of the bulk Richardson number.

In figures 5 and 6, the solid contour represents zero density separating regions of lower
density in the upper layer and higher density in the lower layer. This allows us to make an,
analogy with a two.layer flow. We see as t increases, the right moving wave which protrudes
into the upper layer starts to dominate while the effect of tile left moving wave becomes
negligeable. This is particularly evident, for the case where J = 0.12. Also. for J = 0.12, as
r increases, the lower layer starts to billow into the upper layer, as can be seen be observing
how the contour of zero density changes with changing c. This call be explained by observing
that the linear growth rate of the right moving wave increases with r

4 Comparison with Experiments

We now compare the results shown in figures 4, 5 and 0 with the experimental restults shown
in figure 1, We start with the experimental results of Lawrence ct. at.[4] (figure 1a). First
consider the case J - 0.12. We see from thle experiments that there are only disturbances
protruding Into the upper layer. This indicates that tile value of st. be sufficiently hulge so
that only the right moving wave is present. Inl this case, however. there is no billowing into tit,
upper layer, thus r must be sufficiently small so that the growth rate of thie right-moving wave
is small enough to prohibit any billowing, On careful examninationi of figure 5 we conclude that
the value of e In the shown experiment is approximately 0.1. As for tile flow when i = (0.09.
we see once again that there are only disturbances protruding into the upper layer present,
but here there is billowing. From figure 0 we see that although there is billowing for all values



of r. it is only when c has reached 0.25 that the effect. of the left. inovieg wiwv, is i(, Juziger
noticeable. The experimental results of Zhui and Lawrezce[(0J (figure 1b) look similar to th,
computations shown in figure 4. Thus the value of r is close to zero. It should be ntoted thiat
the differences between the experimental and computed results can be attributed to tOw facrt

that the measured values of the bulk Richardson number in the experii|ent. are approximate
and the effect of r in the computations is indicative of the behaviour, but. not. exact

5 Conclusions

Nonlinear simulations show that. rnon-sylknlet.ric profiles can be, used to explailiv thull u
sidedness" often observed in experiments with larger values of J. We see that in order to
observe a "true" Holmboe instability (two waves moving iii opposite dihectiotas) as ill ligurt
Ib. the mean profiles must be almost synmnetric (tV 0,1). When Hohlu•no instabilities •,i
not observed in asn experiment, the results of the simulations can be used to. determinei a rough
approximation of the value of t required in order to observe the given flow.
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(a) J =0.12

J 0.09

(b) J f 0.3

Figure 1: a) Experimental results froui Lawrence et. at. for J = 0.12 and 0.09. In both
these casm liaear stability analysis predicts Holinboe type instabilities, but we see that there
only disturbances protruding into the upper layer: b) results from Zhu and Lawrence. here,
Holmboe type instabilities are observed. All vahes of J are approximate.
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Figure 2: Diagram of the mean velocity and density profiles with AU = - Ap
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Figure 3: Results of linear stabihty analysis for J 0.12 and 0.09 with Re= 25. Pr =36.

and R = 6. Here a, is the growt~hrat~e and a is the wavejiumber. When E 0 there iare
two unstable wave with the same growth rate and opposite pliase speeds. For c :7 0. the
faster growing mode corresponds t~o the 1 iglit.-wloviiig wave alld t-14 slower glowing uIloud to
thc left-moving wave.
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Figure 4: Results of nonlinear simulations with J = 0.3, 1?d 6, Re . 25, and Pr 3 for
e 0-- . Here contours are of constant densitdy p = ph(z) + p' in the. T z plane. h0. been
scaled with respect to its period 2sr/ro' where a* = o.6.
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Figure 5: Results of nonlinear simulations with J = 0,12, R = G, Re = 25, and Pr = 30 for
e = 0, 0.1 and 0.25. Here contours are of constant density p = p.(z) + p' in the z - plane
where x has been scaled with respect to its period 2or/n'.
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LOCKED STATES, PHASE SOLITONS AND HOLMBOE WAVES
IN SPATIALLY FORCED MIXING LAYERS

Olivier Pouliquen, Jean-Marc Chomaz & Patrick Huerre
Laboratoire d'Hydrodynamique (LadHyX)

Ecole polytechnique
F-91128 Palaiseau Cidex France

A comprehensive experimental and theoretical study of finite-amplitude Kelvin-
Helmholtz and Holmboe waves at the interface separating two immiscible fluids
has been undertaken. The experimental set-up consists in generating an
accelerating shear flow by tilting a tube filled with two liquids of different density
(Reynolds 1883, Thorpe 1969). As soon as the shear exceeds a critical value,
interfacial waves are produced at an intrinsic wavelength that can be predicted by
linear stability theory. The evolution of the interface can be synchronized by
spatially forcing the flow with the help of small obstacles periodically distributed
along the horizontal walls. When the tube is maintained tilted so as to produce an
accelerating shear flow, the competition between the forcing wavenumber' and the
intrinsic wavenurnber gives rise to a variety of locked states at superharmonics of
the imposed wavenumber (Figure 1). As the forcing wavenumber is increased
above the natural waverumber, stationary phase solitons are observed that are
indicative of the existence of incommensarate states (Pouliquen et al. 1992).

10X
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Figure 1. Mode diagram of accelerating shear layer under spatially forced conditions.
The ratio of the response wave number kr to the forcing wave number kf is plotted as a
function of the ratio of the for, ig wave number kf to the natural wave number kn . The
symbols refer to different inclination angles as indicated.

In concurrent theoretical studies (Pouliquen et al. 1994b), the spatio-temporal
evolution of the vortex sheet separatirg two finite depth layers of immiscible
fluids has been examined in the vicinity of threshold (Weissman 1979) in the
presence of spatially periodic forcing. As a result of Galilean invariance, the
interface deformation has been shown to satisfy a coupled system of evolution
equations involving not only the usual "short wave" at the critical wavenumber
but also a shallow-water "long wave" associated with the mean elevation of the
interface. In the Boussinesq approximation this model reduces to a forced Klein-



Gordon equation. Forcing is shown to lead to one-dimensional propagating Sine-
Gordon phase solitons in agreement with numerical simulations of the Klein-
Gordon amplitude equation.

t ) t• b) t *r €

4 4

22 2

0 6 X" 0 6 X* 0 6X*

Figure 2. Spatio-temporal x*-t* diagram of interface elevation in the case of constant
shear. Following the viscosities of the two fluids the bifurcating wave propagates either
to the right (a), or in both directions (b) or to the left (c).

In order to test the predictions of this weakly nonlinear analysis, constant-shear
experiments have been performed near onset by bringing the tube back to its
initially horizontal position (Pouliquen et al. 1994a). The nature of the instability is
then observed to change : whereas stationary perturbations prevailed in the
accelerating case, counterpropagating waves are now produced which cannot be
accounted for by the vortex sheet model. A linear stability analysis of a density
discontinuity embedded within a piecewise linear velocity profile has
demonstrated that such waves are Holmboe modes (Holmboe 1962, Koop &
Browand 1991, Lawrence et al. 1991 and Smyth & Peltier 1991) associated with the
formation of diffusive layers above and below the interface. Good agreement is
then obtained between measured and predicted values of the critical velocity
difference, propagating velocity and growth rates of the waves. The instability
analysis of asymmetric velocity profiles further reveals that the breaking of
reflectional symmetry gives rise to a single propagating wave near onset in
complete agreement with experiments (Figure 2.).
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Abstract

In a two-layer quasi-geostrophic model, we investigate the nonlinear evolu-
tion of a linearly unstable baroclinic vortex. For moderate growth rate, weak
perturbation amplitude and very little hyperviscosity, a regime of regular oscil-
lation is attained which is accounted for in physical space by a quasi-periodic
reversal of the vertical phase shift, and in an integral manner, by a correspond-
ing back-and-forth potential energy transfer between the mean flow and the
perturbation. In a rotating frame, the disturbance varies around an elliptical
mean state, which has a biunivocal relation between potential vorticity and
the corotating streamfunction with the layerwise angular velocity. Simulations
with weaker Burger or Reynolds numbers show less regularity in the flow and
eventual vortex breaking.

1 Introduction

Vortices are long-lived and robust features which play a major role in the dy-
namics of ocean flows. They often originate in the instability of large-scale or
of coastal currents, but they can propagate far away from their region of for-
mation thus contributing to the global budgets of heat and momentum. It is
therefore of treat importance to determine the vortices' resistance to external
perturbations. Hereafter only geostrophic vortices with low Rossby numbers
are considered, to retain mathematical simplicity.

Vortex stability has already been investigated at great length in the context of
two-dimensional incompressible flows (Gent and Mc Williams, 86; Carton et
al., 89; van Heijst it et al., 91; Orlandi and van Heijst, 92; Carton and Legras,
94). It has been proved that multipolar structures could stem from barotropi-
cally unstable vortices (Carnevale and Kloosterziel, 94; Morel and Carton, 94)
and that tripoles were stable forms (Polvani and Carton, 90). Vortex stability
in stratified fluids has received less attention due to complexity of the problem
(Griffiths and Linden, 81; Ikeda, 81; FlierI, 88; Helfrich and Send, 88; Flor et
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al., 93). There, the dimension of the parameter space renders a comprehensive
sensitivity study not tractable, even for a two-layer flow.

After setting the mathematical framework (section 2), we present the linear
instability of a baroclinic gaussian vortex and the diversity of firite-amplitude
regimes (section 3). We then concentrate on an elliptically perturbed vortex:
we detail the vortex evolution during the nonlinear stage of the instability
and relate it to vertical phase shifts and energy transfers. We determine the
underlying baroclinic ellipse in a layerwise rotating frame and finally evoke
possible extensions of the study.

2 Mathematical and physical framework

In oceanic flows, the Earth rotation and thermohaline stratification often ren-
der motions quasi two-dimensional and non divergent. These influences, of
comparable strength, then dominate advective effects, so that the Burger num-
ber B -. I.) 2 is order unity and the Rossby number Re - " is small, with
U, L, h, f,Jh typical measures of horizontal velocity, scale, vertical scale, Cori-
olis parameter and Brunt-Vaisala frequency. It is reasonable to assume weak
diffusioni, so that the Reynolds number Re - is extremely large (v is the
fluid viscosity). Under these assumptions, f-plane approximation and constant
total depth (flat bottom, rigid lid), a two-layer quasi-geostrophic model is used,
and is sufficient to represent baroclinic instability.

In dimensionless form, the potential vorticity conservation in each layer is:

dqj 1
dTt -r eq, - da•.•,q.j) = ejj -(1)

in polar coordinates, wherej = 1 and 2 represent the upper and lower layers,
and for which we have used the well-known hyperviscosity. The potential
vorticities are defined by

, = V2V - 4 (-- /'Ik), (2)

where k = 3 - j, hj is the dimensionless thickness of layer j and B is the
squared deformation radius. Our choice is hi = h2 = 1/2, though this sup-
presses the baroclinic triad (Carton and McWilliams, 89, section 2.2). It has
been checked that this does not qualitatively alter the following results. Our
nonlinear numerical model is based on a spectral Galerkin method, assumes
biperiodic boundary conditions and is resolved on 128 gridpoints in both hor-
izontal directions. The Re-' vi•lues varies between zero and 8 10-'.

2



The initial conditions are composed of an axisymmetric vortex and a super-
imposed monochronatic normal mode perturbation:

Vb(ro) = 0 ;"(-) + 1)(r,6,i, (3)

for which the riean flow has a gaussian density interface

6 = =VoP-'* (4)

and the disturbance has the form

V" = ReaI{ (j(r) cxp(it(O - ct))] (5)

where f is the azimnithal wavenumber, w = t Real(c) the angular rotation rate,
and rr = ( Ira(c) the growth rate.

3 Vortex instability and nonlinear evolution

3.1 Linear instability and nonlinear regimes

Introducing the formulae (3) and (5) into the linearized form of equation (1)
with (2) yields a generalized eigenvalue/eigenvector problem in c, cp(r), which
can be solved only numerically for the vortex (4). This is done by means
of a matrix method which has previously been checked against a shooting
method. Figure I shows the variation of a versus B-' for I = 2 and Re` = 0.
Increasing the vortex size with respect to the deformation radius depletes the
kinetic energy source for barotropic instability and enhances potential energy
conversion, hence baroclinic instability. Beyond Bt' = 0.8 and below the
threshold B,-' = 2.0, disturbances cannot extract energy from the mean vortex
and thus decay. Beyond B;"' = 3.6, the baroclinic instability is explosive and
nonlinear interactions generate vertical vortex breaking into two tilted dipoles.
Finally for B,-' < B` < B;-1, moderate initial perturbation amplitudes and
little viscosity (Re < 8 10-'), nonlinear interactions result in a finite-amplitude
oscillation of the disturbance (see Fig. 2a for B-1 = 2.4 and Re-' = 2 10-9).
Larger Re-' values bring a slow growing trend on the oscillation, eventually
resulting in asymmetric breaking. Finally, a similar phenomenology has been
observed for different wavenumbers (Carton and McWilliams, 89), for other
depth ratios or mean relative vorticity profiles.

3.2 Finite-amplitude oscillation

Figure 2b shows the time series of the phase of the perturbation in both layers,
for our reference experiment (B-' = 2.4 and Re` = 2 10-'). Originally, they
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vary accordingly to (5), maintaining a vertical shift opposite to the mean shear.
Therefore the disturbance extracts potential energy from the mean vortex
(Pedlosky, 79). This conversion can be computed; if ýp,(r) = A,(7)r'OJ•') :

7 " - 'f [AI/A .8i?(0 . - i)1rc:-'adr (6)

where R? is a radius large enough for the Aj to decay significantly. At t - 500.
a phase reversal occurs in the lower layer, followed by a periodic but opposit'
variation to that in the upper layer. This evolution corresponds to a regular
back-and-forth energy exchange betwven the vorte.x and the disturbance and
thus a finite-amplitude oscillation.

During the oscillation, a decomposition into azimuthal modes shows that odd-
wavenumber components have vanishing intensity; moreover, the alteration
of the axisymmetric part of the flow from the initial shape is riot sufficient
to render the mean vortex neutral to its mode-2 perturbation; finally the
intensity of higher even-wavenumber components is too weak to intervene in
the nonlinear equilibration process (contrary to barotropic flows). A low-order
projection model and amplitude equation have not been derived here as the
radial profiles of the modes vary much in time. Power, cross-modal and cross-
layer spectra have been computed for this experiment, and show well-defined
frequencies for the dominant modal components. These observations point to
a radically different equilibration mechanism to that occuring for barotropic
vortices: filament shedding is not striking, the shield in relative vorticity has a
minor role, nonlincarities are weak in the finite-amplitude regime, few modes
are involved, no steady state is attained but a counter-rotating, oscillating
ellipse, for which the ellipticity does not reach large values. All this suggests
to compare this experiment with a contour surgery simulation (Dritschel, 88)
of a baroclinic Kirchoff ellipse with the same vertical structure and average
ellipticity. Time- series of the deviation and frequency spectra for the surgery
run show a smuprising similarity with the spectral simulation. This supports
our analysis of a simple dynamical system. Finally, temporal regularity is lost
in both cases (spectral code or contour surgery), when the initial perturbation
amplitude or the viscosity are larger or for shallow upper layers (h, = 0.2
representative of the ocean thermocline).

3.3 The underlying baroclinic ellipse

In a frame of reference rotating with the layerwise angular velocity of the
mode-2 component, the vortex appears in both layers as a pulsating ellipse. Its
time-average over 18 periods of oscillation yields a slightly elliptical baroclinic
vortex (Fig.3a), with a simple relation between the potential vorticity and
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the corotating streamfunction (see fig.3b). When inserted in equation (I),
this form corresponds to a layerwise steady state, which has nevertheless no
meaning as a vertically coherent structure, because of the vertical counter-
rotation. Moreover, this average vortex is unstable and evolves to the pulsating
ellipse when used as an initial condition for a rerun of the model. This ellipse
is a limit cycle, a non chaotic attractor (with little sensitivity to noise in tIhe
initial conditions).

4 Conclusions

Baroclinically unstable geostrophic vortices with a gaussian interface and a
niode-2 deformation can evolve to a vertically counter-rotating, pulsating el-
lipse for moderate growth rates, weak perturbation amplitudes and little vis-
cosity. The time evolution of this ellipse is regular, showing a periodic reversal
of the vertical phase shift and of the corresponding potential energy conversion,
l'ew modes are involved in this process and there is a significant regularity in)
time of the evolution. In a layer projection, the oscillation occurs around a
slightly elliptical state, unstable but not chaotic, with a simple relation be-
tween potential vorticity and streamfunction, and there is a limit cycle. To
better assess the influence of the interaction between the upper and lower layer
mode-2 components, we plan to run a equivalent-barotropic simulation of the
same case, with a periodic forcing generated by a rotating, but non pulsating
shear corresponding to a fixed aspect ratio (lower layer) ellipse.
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INTENSE VORTEX MOTION IN A CONTINUOUSLY STRATIFIED

DIFFERENTIALLY ROTATING FLUID
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ABSTRACT

An analytic expression is obtained for the 0-induced rneridionally-westward acceler-
ation of a monopolar geostrophic vortex with a localized core of the potential vorticity
perturbation in a continuously stratified fluid. For a singular vortex with the point core
the asymmetric flow has a self-similar dipolar structure producing the vortex motion in
the direction 1 20 ' from the east with the velocity increasing as 02 13 . Effects of asymmetric
distortion of the finite vortex core are considered.

1. Abundant intense vortices in the atmospheres and the oceans are strongly influ-
enced by the variation of the Coriolis parameter with the latitude, the so-called "13-effect".
An asymmetric circulation around a monopolar vortex which is mainly responsible for the
0-induced vortex drift has been intensively studied during the last decade, both analyt-
ically, numerically and in laboratory experiments. The development of the asymmetric
perturbation with modenumber I = 1 (I is the azimuthal wavenumber) and corresponding
meridionally-westward acceleration of the intense vortex during many turnaround times
have been analyzed in details using the equivalent-barotropi- quasigeostrophic model 1-.

In the present work, the development of the asymmetric circulation around an in-
tense vortex in a continuously stratified fluid is analyzed using a baroclinic geostrophic
monopole model with the potential vorticity perturbation localized in a disk-shaped vor-
tex core. Outside the core the azimuthal velocity and the density perturbation decrease
with increasing a distance from the core in agreement with observed structure of long-lived
oceanic rings and lenses '3. At large distances from the core the vortex structure is de-
.,cribed by a singular solution corresponding to a point "vortex charge" r. In particular, a
self-similar dipolar structure of the 0-induced asymmetric flow for a singular vortex with
a point core, is revealed. Effects of vertic!al distortion of finite vortex core are considered
by splitting the core into a set of thin disk-shaped subcores.



2. We start from the equation describing material conservation of the potential vor-
ticity in fluid particles

DqOq ± Oq Oq =0.
D - + V-L

-t 8t x '9X
Within the quasigeostrophic approximation at the 0-plane for a continuously stratified
fluid in terms of the geopotential, p, the geostrophic velocity, (u, v), and the potential
vorticity, q, are

U = v V =- L(2)

9 = V2p + T_ \N20 _) +'6( Z (3)

Here we adopt local Cartesian coordinates, (x, y, z), non-dimensionalizing by the horizontal
scale, L, velocity scale, U, time scale, L/U, and the vertical scale, H = Lfo/No, where
fo and No are the characteristic Coriolis and Brunt-Vaisala frequencies, thus N 2 (z) is the
nondimensional vertical gradient of the mean density profile, '6 = Lf'/U and f' is the
meridional gradient of the Coriolis frequency.

Eq. (1) obeys the symmetry relation p(x, y, z, t) = -p(x, -y, z, t). Thus, regarding
monopolar vortices, we consider only the evolution of geostrophic cyclones, i.e. structures
with positive amplitude of the fluid potential vorticity q - O3y.

By solving Eq.(3), the geopotential can be expressed in terms of the Green function
G(r,z,z'), 2 a = (x - xI)2 + (y -V/)2, of the boundary-value problem for this three-
dimensional elliptic operator

p(x, Y, z, t) = / G(o, z, z')[q(x', y', z') - 1y']dx'dy'dz' (4)

Besides material conservation of the potential vorticity in fluid particles, there are two
quadratic invariants of Eq. (1), the total energy and potential enstrophy,

p[(7P) + - -V (q ) ]ddxdydz (5)

3. To consider the evolution of M vortices with initially compact cores of the fluid
potential vorticity q - 3y, we introduce M local cylindric coordinates (r, 0, z) relative to
horizontal position (xk(t), yk(t)) of the center of the kth structure. In a co-moving reference
frame the flow field is described by thc streamufunction

Pk = p + xsr Sin 0 -. 1kr cos 6, Xk = dxk = d(-)
Cdt, k' dt()

where (k(4t),yk(t)) is the instantaneous propagation velocity of the kth vortex. Thus, in
translating coordinates Eq.(1) becomes

Oqk 1O(qk, 0)-= -ra( -, =.(qk, Vbk) (7)



where J denotes the horizontal Jacobian.
Defining the propagation velocity of the kth vortex center as the flow velocity at the

center r = 0, z = Zk, from (6) we obtain

rk = xk + 4ik = 12j (- exp(iO)dO (8)7r -(r k

Thus, the vortex propagation is defined only by the azimuthal mode I = 1 of the asymmetric
geopotential p relative the kth center.

For every vortex we may separate the streamfunction and potential vorticity into
symmetric and asymmetric parts

VPk = Pk (r,z,t) + Ok(r,O,z,t), q& = Qk(r, zt) + ý,(r,0,z,t) (9)

Thus, from Eq.(5) we obtain that the evolution of the symmetric and asymmetric circula-
tior.s obeys

-Qk = (10)
Ot

a~k

10k+1 (kk-P,,k, J(,b, 1 J(Q k i)) (

Q = 1 - 1 rk =r -O (12)

Here ( ) denotes an azimuttaally average relative to the kth center, SIk(r, z, t) is the rota-
tional frequency and rk (r, z, t) is defined from the radial gradient of the kth vortex potential
velocity. Note, that Pk and Ok describe the flow induced by the potential vorticity of all
vortices according to Eq. (4)

M=M

Pk + Zk = E J G(al.mn zzt')(Q", + Oy, - 3!im - O3r'sin6')r'dr'dG'dz' (13)
?n= I

where

2ak, = (r cos 0 -- r' rossO' + Xk -- X") 2 + (r sin 0 - r' sin 0' + Yk - Yjn) 2  (14)

Thus, the evolution of every %ortex is influtinced by all otheis.

4. First we consider the evolution of a single initially a.-isymmetric vortex on the 3-
plane. Focusing our attention on tne evolution of strong trionopolar vortex assuming 03 C 1,
we describe developing, of the asymirietric ).:tential vort icity ý1, which is proportional to
.l, by neglecting, the rignt-hand sides in Eqs (10)-( 11) whitL are proportional to .'2

+ 2--" 2 0"1-." (15)



Here Q i (r, z) and r1 (r, z) are defined by (12) for the initial axisymmetric vortex because
its structure does not change in the leading order according to (10).

For an axisymmetric vortex with an extremum of the fluid potential vorticity at the
level z = z, on the axis of symmetry, initially

fi(r,z,O) = OrsinO 1 rl(r, Z) (16)

describing small shift of the axis of symmetry relative to the potential vorticity extremum
which is defined as the vortex center, where ýj = 0.

As follows from Eqs (15)-(16), the asymmetric circulation generated by the 13-effect
around the vortex is represented by the azimuthal 1 = I perturbation in the form

= Refr(a + if3) exp(-iO)], 01 = Relr(b + i01)exp(-i9)] (17)

OaO- - MI(a + if3) = -iri(bh+i÷) (18)

b = J G'(r, r', z, z')a(r', z', t)r' 3dr'dz' (19)

S1f2 7 OdiI= 1 fn2"r 9G^t " 8

G' j G(a, z, z') cos1"d = - -j L adG", 0f = 0' - 0 (20)

where a(r, z, t) and b(r, z, t) are complex functions, describing the radial-vertical structure
of the azimuthal 1 = I perturbation of the fluid potential vorticity and geopotential,
correspondingly.

When defining the vortex center as an extremunm in the potential vorticity q, we must
in Eq. (18), set a = -i at r = (0, z = zt. Using (19)-(20) and integrating by 0", we
obtain an expression for propagation velocity as follows

S= ib(0, zj, t) (i G) a(r,,z, t)rrdr'dz' (21)ih ~ ~ M) b(,zt)=- "a(

As follows from Eqs (16) and (19), initially
ar (r, z) b = . f1(r, z)(2

rinzi)rI(o'ZI)

implying that the monopolar vortex starts by drifting westward

Fi = 3 '--I < 0 (23)

The differential rotation of the asymmetric potential vorticity (the term 1ThO01/90 in
Eq.(15)) and the distortion in the vortex shape caused by the asymmetric flow relative



to the vortex center (the right-hand side of Eq.(15)) produces a west-meridional accelera-
tion of the vortex center.

Quasilinear system (18)-(21) allows for calcnlating the vortex motion in the differen-
tially rotating fluid during many turnaround times. Similar approach has been used for
describing the self-prop4lled propagation of a strong vortex due to the 9-effcct within the
equivalent-barotropic model."-s

5. The solution of (18) consists of two parts. The first one develops due to the
differential advection of the asymmetric potential vorticity (the term Slaof/88 in Eq.(15)).
It is described by a simple expression obtained while neglecting the right-hand side in
Eqs.(15), (18)

=3r I1A Z- )sin(O -Q, t), a'=i03  ( 6, z, ) exp(-ifit)-io (24)

and produces a west-meridional acceleration of the vortex center.
The residual ýj - ' is generated by the advection of the potential varticity of the

symmetric vortex by the asymmetric flow relative to the vortex center (the right-haizd side
in Eq.(lb)) then produces additional motion of the vortex center due to such a distortion
of the vortex core. Note, ir: the equivalent-barotropic model the effect of a distortion of the
vortex shape on the vortex mot tion can be expressed in an explicit analytical form either
for a piece-wise constant potential thickness of the initial axisymmetric vortex 4 , ox for a
distributed axisymmetric vortex within the barotropic non-divergent model.5

For a singular vortex with the point core of the potential vorticity, r, = 0 everywhere
except the vortex center and the asymmetric circulation is described only by (24) in the
simple form

ý' = Orsin(9 - f21t), a' = i'3(exp(--i9jt) - 1) (25)

and inserting (25) into (21) w( obtain the explicit expression for acceleration of sucih
singular vortex.

In particular, for constant N = I and far from boundaries, the Green functicn and
the vortex Hlow arc prescribed in tl,e form 7

G = --- [2a+ (z - z') ?'2, = r +(z,-z)1 (26)
4,,r

Correspondingly,

G 4r E ? -- ( 27)

if we normalize the rotational frequenc:y S2l = 1 at the distance R = 1.

In this case the asymmetric flow induced by the O-effect has a self-similar dipolar
structure depending only on r = tR-:) For the vortex propagation front (2D) and (25) we
obtain

iI = (extit) - 1)Qjr: drdz = (exp(ir) - l)- (28)
~ f~e;~(i~t) -



Thus, the singular vortex with the point core moves west-poleward with the velocity in- I
creasing as t 2/ 3 in the direction 1200 from the cast.

The distortion of the vortex core is negligible also for thin disk-shaped core with
constant potential vorticity because again r, = 0 everywhere except at the core boundary
r = re,. Thus, the solution of (18) has the form (25) if we eliminate singularity at the core
boundary in (18) setting

ýl = ib(r,, zi, t) = -ilr -y a a(r', z', t)r'3 dr'dz' (29)

The rotational frequency Q, for the a disk-shaped core is expressed by elliptic integrals6

as well as the vortex propagation according to (25) and (29).

6. To take into account the vertical distortion of the vortex core if it i'. not thin, we
consider vertically grouped set of thin vortex subcorcs, assuming their centers are slightly
displaced from the axisymmetric state.

Introducing the small parameter .2 = max(xA + y2) << 1, we see that the asymmetric
flow is proportional to c so that in the leading order we again can neglect the right-hand
sides of (10)-(11) which are proportional to 02 , to obtain Qk(r, z) = Qj,•,• and

O~k +1k (9G Fk 10 (30)

where the rotational frequency Ok and rk are prescribed by unperturbed state according to
(12), while according to (13) the asymmetric streamnfunction Ok relative to the kth center
is induced by the asymmetric potential vorticity ý, induced directly by the O-effect around
every subcore as well as by the symmetric circulation of all subcores due to horizontal shift
of their centers which represents the distortion of the vortex core

VnvM

Pk (Okk• + 4I'km) + r(xksinl0 -i cosO) (31)
m=1

Jkr. f G((akm, Z, Z')(•m - fJr'sinO')r'dr'dO'dz (32)

= J[G(Uk., Z, z')-G(o, z, z')]Q.r,(r', z')r'dr'dO"dz' = Pk,,(Rk,,,, z)- Pk.,(r, z) (33)

where

2a = r2 + r -2rr'cos(O- 67), R.t = (rcos6-+Xk-Xm) 2 0 (rsinO Yk-yi) 2 (34)

Expanding (32)-(33) for small f we Obtain

Jm G(a, z, z') - r' Kill 0')r'dr'dO'dz (35)



ckm = rf~km[(Xk - zm) cos 0+ (Yk -Ym) sill 01 + O(d2), ilk" = 1Pk (36)

r Or

Following (30)-(36), the asymmetric flow around vortex centers can be again represented
by the azimuthal I = 1 perturbation in the form

Ek = Refr(ak + iO) exp(-iO)], Ok., = Rejrbkm (r, t) exp(-iO)] (37)

8ak nM= Ma i2k(a,4 + i,3) = -irk[ E (Qk,rk,,, + bicm) + iik - (38)

Vrt= I

bkn J G'(r, r', z, z')a, (r'. z:', t)r'3 dr'dz' (39)

where a,.(r, z, t) and bkm(r, z, t) are complex functions, describing the radial-vertical struc-
ture of the rmth asymmetric fluid potential vorticity and corresponding flow induced around
kthi subcore, while rkm = Xk - X, + iYk - iy,,-.

Eliminating singularities by setting ak(rk,, Zk, t) = 0 in (38) gives M equations for the
propagation velocities of subcore centers

ik + i i E (Oktrnrkm + bkmc), (40)
m•-I

where according to (20) and (39)

bkmc = -7r f af,(r', z', t)r' 3 dr'dz' (41)

Here Qk,,,, is the rotational frequency induced by the rnth subcore at the boundary of the
kth subcore and M is the total number of all subcores.

Without the LI-effect, there is no asymminetric deformation of vortex cores, bkm. = 0,
and Eq. (40) is reduced into

±k + iyk = i !Qky,rkm (42)

Instead of (40), this linear system of ODE (42) describe mutual rotation of thin subcores
simulating the asymmetric deformation of vortex cores by such kind of vertical discretiza-
tion. Note, that the system (42) can be written in the Hamiltonian form

OH . ax
7-=-, O(43)
Ok

where the Hamiltonian H

M M

1 E Z kmI(Xk - X,)0 + (Yk - Ym)•1 (44)

k-I m=1



is conserved as a consequence of the angular momentum conservation.
In general case, the solution of (38) for a, has the same form as (25) so that all bkA,,,

expressed by integrals (41) are explicit functions of time. The sys tern (42) can be rewritten
in terms of relative distance between subcores

M
rkm = iZ(IkLerkt - f,,Ucrm + bik(t) - bv.tc (t)) (45)

1=1

and solved in terms of eigenvalues and eigenvectors of matrix Q2.
The system (45) allows for taking into account asymmetric deformation of vortex core

and corresponding modification of the vortex propagation during many turnaround times.
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ABSTRACT
A series of experiments is described in which an oscillating grid. positioned at one end

and mid-depth of a rotating channel filled initially with a linearly-stratified fluid, produces
an intermediate depth boundary current. In the first set of experiments, the bottom of the
channel slopes away from the side on which the boundary current is formed, although it is
wholly below the boundary current flowing along the vertical sidewall. In the second
configuration, the bottom once again slopes away from the boundary current sidewall, but in
this case the currents impinges wholly along the sloping bottom. Gaps of varying lengths are
placed in the sloping bottom, and their interactions with the boundary current are observed.
In the first configuration, the presence of -w sloping bottom is found to destabilize the flow.
In the second configuration, the gap causes an eddy to be trapped against its upstream side.
The ratio of the gap width to the flow deformation radius is found to be the dominant
parameter in determining the nature and persistence of the eddy. The experiments are
discussed in relation to similar experiments using rectilinear boundaries, and to the suggested
formation of meddies at canyons in the Spanish continental slope.

INTRODUCTION
This work has both general and specific motivations. The former is a desire to

understand the interaction of intermediate-depth boundary currents (IDBCs herein) with non-
rectilinear boundaries. In this sense, the work is an extension of previous, counterpart
experiments with a vertical wall/flat bottom boundary geometry (Besley. 1989). The previous
work found that the boundary current became unstable to inesoscale, lateral intrusions when
Nd/fl 5 3.5 'where N, is the ambient buoyancy frequency and 0 is the channel rotation rate).
These instabilities always formed at the cioss-channel front of the mixed patch at the grid.
and not on the boundary current itself. Exai.oles of these results are shown in Figure 1. In
the present work. instabilities were always observj forming on the boundary current. even
though NdfQ > 3.5 for all runs. The specific motivation of tale experiments was to investigate
the possibility of meddy formation at sites where the Mediterranean outflow encounters
submarine canyons in the continental slope, since there exists strong circumstantial evidence
for the occurrence of such a process (Prater and Sanford. 1991).

APPARATUS AND PROCEDURE
A perspex channel (2.1 m long x 0.46 m wide x 0.31 m deep) was fitted with a rigid

lid to form an enclosed space -0.24 m deep into which the stratified fluid was placed. At one
end of the channel a grid suspended at an intermediate depth could be oscillated vertically
with an amplitude of -1.5 cm, at a variable rate (5 - 35 rad/s). The grid consisted of a 6x4
array ef square elements made up of perspex limbs separated by a mesh width of 6 cm.

Side slopes of two different gradients were employed (Figure 2). Two sections of
slopiing bottom were used. the gap between them forming the interruption in the slope
described above. Plan views of the three gap configurations are shown in Figure 3. The
channel and all the attendant instrumentation were mounted on a rotating table, which had an
adjustable rotation speed in the range 0.05 - 0.6 rad s'. An array of three cameras positi ied
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Figure I Plan view of typical intrusions observed by Besley (1989). The small feature (A)

corresponds to that measured in these experiments. All these fe.,ures form on the cross-
channel front near the grid at the left hand end of the figure

above the channel was used to record the passage Rigid Lta
of the flow. The channel was illuminatedby a Boundary
horizontal sheet of light, so that only events Current
occurring near the grid depth were recorded. The sloing
flow was visualized in two ways. Firstly. runs Bott'om

were carried out in which clouds of tin particles
were electrochemically released from solder
attached to the grid. givin- the mixed fluid a _

cloudy-white appearance and indicating the , L:c

overall shape of the flow. These runs were then B . _
repeated using particles which were neutrally Bounrary Botta.
buoyant at the depth of the grid, providing details
of the internal structure of the flow. thus
complementinig the solder method.

The channel was filled and its initial
buoyancy frequency (N, - a value of 1.0 rad s Figure 2 Views of the channel from the
was used in all runs) measured. The rotation rate Frid end showing the relative positions of
of the apparatus was then gradually increased
from rest to within ±1% of an operator-specified the slope and boundary current for (i.

value. Once the required rotation rate had been top) Case I and (ii. bottom) Case II flows

reached the system was left until the fluid had
reached a state of solid-body rotation. The grid was then turned on and the experiment
commenced (the grid oscillation rate was 2U rad s" in all runs). In all runs a series of 20
photographs were recorded 15 seconds apart Each experimen therefore lasted for five
minutes, after which the intrusive flow had traversed the perimete" of the channel and began
to re-enter the mixed patch. Since this indicated a change in the initial conditions, results
were nut recorded beyond this stage.

RESULTS

Case I Flows
This section describes the results obtained from experimental runs in which the

configuration in Figure 2 (i) was used. Variations of the gap width, G, and the rotation rate.
Q. were investigated. A gap width of - indicates that no downstream sloping section was
used. Examples of the flows observed are shown in Figure 4. Figure 4 (i) shows a typical



boundary current configuration_
for the slower rotation rate,
f2=0. 13 rad/s. At least two (i)
lateralLy-growing, vortical
features such as those shown
were observed in every run for
this rotation rate. These began (ii)
to develop as soon as the _ _ _ _

boundary current was formned.
apparently growing from
perturbations caused when the (Iii)
mixed patch impinged on the
side wall. When the rotation G '

rate was higher (e.g. Figure 4 Grd Slopes
ii). although no change in the Figure 3 Plan views of the slope configurations used for
along-channel sense was noted. (W G = (ii) G = 0.40 m (iii) 0 = 0.15 m
the lateral growth appeared to
be concentrated into only one or
two, much larger. vortical features. In both cases, the advection rate of the intrusions was
somewhat slower than the nose speed of the boundary current proper. Very similar features
were observed in the identically-parameterized runs using the particle-tracking method.

Figure 4 Typical flows in Case I runs for (i. top) 02 = 0.13 rad s' (ii, bottom) Q = 0.26 rad
sl. Note that the intrusions here originate on the along-channel front of the boundary current
(c.f. Figure 1).

Length measurements were scaled by the first internal deformation radius, R,
(g'H)IZ"-f, where g' = gAp/p, is the reduced gravity (Ap being the density jump at the top and
bottom of the mixed layer, and p0 the density of the mixed layer), H is a typical depth of the
current andf= 2.Q. Although no measurements of depths were made, the depth of the current
was ob:,erved to be of Lne order of a few centimetres. Using H - (KIN)". where K is the

grid acuon (Lon., 19"78). gives a value of -0.03 m. which is consistent with observations.



Vertical density profiles of mixed patches measured in another context (Folkard et aL. 1994)
suggest that Ap - 10 kg m', giving g' - 0. 1 ms". Toese estimates give R, - 0.2 and 0.1 m
for Q = 0.13 and 0.26 tad s" respectively.

The speed, v..., of the nose (defined as the point furthest downstream reached by the
cloud of tin particles) was found to be ~0.30(g'T)"/ for all six values of (G.f). using the
values of g' and H defined above.

Current widths were measured at Point
A on Figure 3 during each run, and were found
to have values in the range 0.5-l.ORd at most
times, implying that the current is essentially Aros.-

geostrophic. The only exceptions occurred in ChW"dM

the Q = 0.26 rad s" runs, when features such as E

that shown in Figure 4 (ii) passed the , V/rtecic

measurement point, appearing at the same time Inrwo

for all values of G. In the G = 0.15 m runs, a .Along-Chael W Postian $dewalI

second such feature was also observed. I

The along-channel position of the first
lateral intrusion to form in each run was shown
in Figure 6 (the position of this feature is Figure ( Definitions of the instability
defined in Figure 5). In the case of low amplitude (y) and position (xm
rotation, the data show very little variation with measurements
gap width, especially at low at, when v/v,,, -
0.5. At higher fat, the advection rate decreased with increasing G. The data for the f = 0.26
rad s"' cases have initial values very close to v/v,.. - 0.25. The divergence observed in the
Q = 0.13 rad s"1 case is much more marked here. the G-= and 0.40 rn intrusions becoming
almost stagnant, implying that the presence of a flat bottom had a retarding effect. Note that
the positions at which this happened were not coincident with changes in the topography over
which they occurred.

0.70 ,/O

0.00

0..300,

A020 so 00 1 0 .10 a to IQ O 0 so t o a g os

at at

FIgure 6 Development of the position (x in Figure 7 Development of the amplitude (y
Figure 5) of the first lateral intrusion to in Figure j) of the first lateral intrusion tt)
form on the boundary current. Symbols as form on the boundary current
in Fig. 7



Figure 8 Photographs showing typical flow patterns for Case II runs, for (i, top) G =a (U,
middle) G = 0.40 m (iii, bottom) G = 0.15 m

Figure 7 shows the variation of the amplitude of these features. In the 0 = 0.13 tad
s"' cases, a wider gap corresponds to more rapid growth. All these intrusions had amplitudes
in the range 0.5-1.5R,. The QL = 0.26 rad s' cases show evidence oi the large intrusions
exemplified in Figure 4 (ii), the amplitudes growing to - 4 Rd. Once again, growth rate
increased with increasing G, the variation being observed at all times. rather than appearing
suddenly when the intrusions pass over a change in the bottom topography.

Case 11 Flows
This section presents results from the runs using the configuration in Figure 2 ii.

Examples of typical flows for each of the three gap sizes used are shown in Figure 8. In all
these runs. the boundary current separated from the side slope at the upstream edge of the
gap. forming an eddy that remained in contact with the upstream side of the gap. in contrast
to the separation observed by Stem and Whitehead (1990). and postulated by D'Asaro (t988).
Klinger (1993) observed that separation is suppressed when the current is baroclinic and when
it is tlowing along a sloping bottom, both of which pertain to these experiments. Vertical
oscillations in the current. caused by the relaxation of the sloping boundary condition, were
observed in every run at the point of separation.

Once the flow reached the vertical sidewall within the gap in the G=** and 0.40 m
cases (Figure 8 i & ii). the boundary current reformed. When G = 0.40 m. this boundary
current then encountered the downstream side of the gap and was forced away from the wall.
When it emerged from the gap in the bottom slope, it turned to the right onct again. A
period of adjustment then followed in which the current was not attached to the wal., There
was, however, no counter-current formation here, and an eddy was not observed in any of the
runs. After the adjustment period, the flow resumed its passage along the sloping bottom.

The G=0.15 m cases (e.g. Figure 8 iii) differed qualitatively from the other cases, in



that the flow appeared to separate, one vein (1) forming an eddy within the gap. and the other
(2) rejoining the sloping bottom downstream of the gap. The flow in the gap appeared to
stagnate eventually, and the boundary current simply flowed across the top of it. relatively
undisturbed. In Figure 8 (i) & (ii). there is evidence of cyclonic vortices in the upstream
comer of the gap. closer to the wail than the main eddy centre and with cores of ambient
(clear) water. This suggests that these features are "counter-eddies" formed by the action of
the main eddy on the fluid between itself and the gap comer. v..J(g'H)-1 is found to be
-0.15 in all of these runs i.e. half that found in the Case I runs for otherwise identical
conditions. The current was observed to adopt a width of approximately R. when flowing
along a verrcal sidewall above a flat bottom. Elsewhere. the flow is controlled primarily by
the constraints of the boundary geometry.

Eddy Measurements
Measurements were made of velocity .Grc Down

profiles along lines parallel and perpendicular -
to the channel sides and passing through the Out of
centre of each eddy that was observed in, the G
particle-seeded runs. The position of the eddy ___ • o
centre was judged subjectively, since it was Into
found to be unambiguous. The notation used in GOP
describing these measurements is shown in
Figure 9. The velocity maximum was Upstream SidevNol
measured for the two counter-flow components
at 15 s intervals. Each such pair of data was
averaged, and these combined data were plotted Figure 9 Definitions of the flow directions
against Qt, having first been smoothed using a within the eddies. The "upstream" and "out
5-point running average, and normalized by of gap" flows are collectively referred to as
their maximum values. These plots (Figures 10 "counter-flows"
and 11) show the expected tendency of the
counter-flows to decay most rapidly in the G =
0.15 m cases, due to the constrictive presence of a narrow gap. A more surprising result is
the significantly higher decay rate in the G = *- case. than in the G = 0.40 m case.

DISCUSSION
Case I Flows

The introduction of a sloping bottom is observed to have very significant effects on
the boundary current (c.f. Figure 1. showing the behaviour above a flat bottom. from Besley.
1989). most obviously the appearance on it of unstable lateral intrusions. The size and
advection rate of these features is strongly dependent on the background rotation rate. and tt
a lesser extent on the size of the gap in the sloping bottom. This may be partially due to the
reduction in volume caused by the introduction of the sloping bottom. However. the
constancy of the nose speed in all runs. and the differences observed between the G = 0.40
m and 0.15 m cases, which use the same fluid volume, suggest that this effect is not
important. Although lateral intrusions are apparent in Besley's results, the initial intrusion.
measured here. remains very small in all his cases. Furthermore. the parameters used here
in runs in which channel-width intrusions were formed are well within Besley's range for a
stable boundary current. These comparisons imply very strongly that the presence of a
sloping bottom topography destabilizes the boundary current. However. the feati.res here have
growth rates and advection velocities that vary continuously, rather than changing suddenly



at ichanges in the topography. Thus. it is evident that the effects of the topography vanauon.s
are transmitted up and/or downstream.

Figure 10 Speed dec.a for ,=O. .'3 rad/%. Figure II Speed JcjVy t'r f=, :'t, rjd,,
Symbols here and in Fig I as for Fig. 7

The increase in size of the inmsusnms with increased rotation rate suggests that the role
tit potential volaciwy conservation should be considered in their development. The following

mechanism is suggested as a model of how this may occur: an initial. penurbau'e. lateral
intrusion ol the boundar• current away from the idewall is compensated for by a mvmement
of vortex c•iumns beneath the currrnt towards the wall and therefore up the bott•om •lope
This causes suashMing of tc columns. and their vorticity decrease.% corresp. -iding I.
producing vertical shear between them and the boundary current. The resultant dc:eierauon
ot the flow reduces the Conolis force into the wail. and the current %preads further trom the
wall enhancing the intusion.

C.ase Ii Flows
"7 ne results obtained in these runs show that anuicy.clonh, eddies are formed at the

upsUteart end of a gap in a %loping •ottom. The perstence tit the., eJdies is t, und tl be
strongl! dependent on the ratio of the flow deformautin radius to the ,idth Mo the gap. At
high v. Jues otf REG. the nairowne,., -f the gap %.'use, the eddy t,, de•,jy rapidl, -% ,:ntiwai
value ,I" R./G. belo, which the dcu.a. rate ti the eddy decrease.,. •i, found to, he in the range
i) 5-0)7 isince the eddy for tR 4.G ;) = i.).., is relausel% persi.tent. but thit fr iR,.G) =
lL 1.15' decay•, relauvely rapidlyi Below R/G - 4) 25. the deJCL, rate in.rcas_•, awamn

Obervations ie-z. Ambar and Howe. 1474). o1 tongues oft Mediterrane.n outtlo%% that
,ometimes follow contours tnto canyons and sometumes flow acros them unaftwec,-J may be
explained in terms otf the rauto of the canyon width and the dcformauon radius Such a
descnption certainly has strmng similarities with the result observed heft.

It :m possible that the decay ot the eddies observed an Al1 caw.s here is due to b,,aundau-
tnrction thit is much higher than that tund in nature. Evidence .'f this dL& p.inly Lt
provided by offshore escursions of fluid partal.es observed at some cAnoon. bv AmbAr and
Howe 1 19'791 and in a model of such a flow b.a Hughes er al. t1 ")) for c1anyon.s tit width
les. than the internal deformation radius of the current. These authors clam that tl•,
phenomenon is dc it, rotauoinal motion • ithin the canzyon that is evidendy suppren.-ed in the
pre•ent expern•nL.s by boundi. friction Despaw thLs,. die diference in eddy decay rate,



oberved in the present study shows that upstream transmittance of the effect ot the
J.wns'tream end ,ot the gap is very impirtant tor this configuratmon as well aw in the Case I
contiguration.

These result-. are relevant to the quesuton of meddy tormation mainly in relation to the
tjeones of D*Asari ( 1999) and Prater and Sanford i1991). These authors claim that the very
high anticyclonic voracity observed at the centre. of meddies is "nly present in the boundary
layer of boundary currents. Therefore to form such features. flow separation must occur. The
present work rmiscs the question of how the eddies proagate away fromn the epar=utIn ite
once they have been formed. since in all the runs carried out here. the eddy became trapped
as the bo)undar. cur•ent flowed over it and reanached ui the boundary downstream of the
sozp coirner in the topugraphy. in a fashion similar to that observed by Klhnger (1993.

Pra;r and Sanford suggest that the imneraction of a barocinmcalv un.table lateral intnrusion Gin
the biwndar, current with the canytm may allow the eddy to propagate away Not-S (IW II

mechanLun of eddy formatkie due lti the antermittency of the boundary current. although
appalendt insuffaikent in itielf to explain meddy formation. i,, another pussible cause of eddy
propagaion.

CONCLUSIONS
(i T"he presence of a sloping broom below an IDBC which is flowing Wlong a vertical

%idewall was ibserved !o induce unstable lateral intrusions of the boundary current not
observed when the tbundary current flowed above a flat bottom. lnciea.ung the background
rotaut.n rate sharply increased the growth rate of such features. The presence of sharp
changes in the topography between a s4oping and a flat bottom had effects on the features that
were transmitted up and downstream of their position.

(ii) An IDBC flowing along a sloping bottom which enc,)untered a sharp corner in the
topography was observed to forn an anticyclonic eddy that became trapped at the corner by
the flow past it of the boundary current. This eddy was found to be most persistent when the
size of the gap in the sloping bottom. G. was in the range 2.0 - 4.(RI.
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On the energy flux from travelling hurricanes on a

f-plane to the internal wave field

Johan Nilsson, Department of Oceanography,

University of Gdteborq, Box 4038, S-40040 Giteborg, Sweden

1. rnternal waves generated by moving hurricanes

Tropical storms with surface wind in excess of 33 ms- 1 are

termed hurricanes in the Atlantic ocean, in the PAcific they are

known as typhoons. These storms move over the tropical oceans at

an average speed of about 6 ms-1 . Hurricanes have approximately

axi-Fymumetric wind fields with a radial extent of about 200-300

km. The radius of maximum wind is usually found 20-30 km from

the storm centre. In the open ocean the wind stress at the sea

surface is the dominating forcing mechanism and the oceanic

response is essentially baroclinic (Geisler 1970). The wind

stress accelerates currents in the sea surface mixed layer.

These currents are generally divergent and induce vertical

motion in the thermocline. The resulting perturbation on the

stratification excites internal waves.

Internal wave generation by hurricanes can be studied with a

model that describes the oceanic response to a steady axi-

symmetric wind stress pattern, which moves at an uniform

velocity. Even though the velocity and the intensity of a

hurricane may change in time this simple model contains the most

important ingredients. In this study the response of a

continuously stratified ocean to a moving wind stress pattern is

analysed with linear theory on a f-plane. The Boussinesq and the

hydrostatic approximations are applied. The wind forcing, say

X=(X,Y), is represented as a body force distributed evenly in

the sea surface mixed layer. The magnitude of the body force is



2

given by the wind stress divided by the mixed layer depth. When

the hydrostatic approximation is made the dependent variables

can be resolved in an infinite set of normal modes. Each mode

has a vertical structure that is determined by the

stratification alone (Gill 1982 S,9.10). The time evolution of

the horizontal structure mode is governed by the shallow water

equations

" ru,, all"

where itn is the projection of the wind forcing on tne n-th mode.

This set of equations supports free waves that satisfy the

dispersion relation (Gil] 1982,S7.3)

-,r -- f- ,( 4 Ii (2+

where k-(k,l) is the horizontal wave vector and cn is the wave

speed of mode n.

In the present application waves ar-o forced by a steady but

moving stress pattern. A steady forcing field can only excite

waves that appear stationary in a frame of reference following

the wave source. A ship in uniform motion is a well known wave

source of this type. In a fixed frame of reference the

frequencies of the waves are given by (the storm moves at the
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velocity U in the negative x-direction)

--) I Ik (3)

The Eqs.(2) and (3) defines a curve, say S,, in the k-i plane

that specifies the excitable waves. The wave number curve S, is

determined by

Eq.(4) describes a family of hyperbolic curves for U>c,. When

U<c, no ydves are excited, which is explained by the fact that

the phase velocity, Cp, always exceeds cn.
i =, (I + I ', = A = I( 1511.hI

When U>cn, waves are excited and an internal wave wake trails

behind the storm. No waves are found ahead of the storm since

the group velocity, C., is always smaller than the phase

velocity. This wave wake has many features in common with the

more well known surface gravity wave wake excited by a ship in

uniform motion. The wave energy, which propagates at the qroup

velocity, lags behind the storm. The waves are thus continuously

radiating energy away from the storm.

2. The internal wave power generated by a moving storm

The wave energy flux relative to the moving wave source may

for each mode be expressed as (Lighthill 1978,S4.12)

I.,- W (1h)

where W, is the contribution to the wave energy per unit area

from mode n. The wave power, Pw(n), is obtained by integrating

the energy tlux across a curve that encloses the forcing region.

The wave power is the fraction of the rate of work performed by
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the wind stress that is absorbed by the internal wave field. A

powerful technique for performing such calculations for a

general wave system has been presented by Lighthill (1978,

S4.12). The result in the present case is given by (see Nilsson

1993 for details)

I'~.Afl( f~~l~%(1r ( ~ (MA fIlk)2 IXk) 2 n-(zko) dl (8)

Here the wave power has been divided in one part associated with

the divergence and one part associated with the curl of the wind

stress, i.e Pw(n)=Pw(n)D *v+Pw(n)c,1. The quantity IX(k)1 2 (the

square of the Fourier transform of the wind forcing) may be

called the spectrum of the wind forcing. (x(k), the angle between

the wave vector k and the forcing 1(k), determines the relative

magnitude of the divergence and the curl of the wind stress. The

integral in Eq.(7) is a simple integral along the wave number

curve S. of the divergent part of the wind forcing spectrum.

Similarly, the integral i- Eq.(8) involves the rotational part

of the wind forcing spectrum, modified by the factor (f/Uk)].

This factor, the ratio between f and the frequency of the waves

on Sn, never exceeds unity.

3. Application to hurricanes



From observations it is known the that the radial wind

distribution varies between different hurricanes and also may

change during the life span of a single hurricane (Weatherford

and Gray 1988). The following simple wind stress distribution is

used here

This pattern gives a reasonable description of hurricane stress

fields in many cases. A constant inflow angle of .=18.430 is

used, which means that the wave power is dominated by the

contribution from the the curl of the wind stress (note that

(t(k)=,/2+q). The radius of maximum wind, L, is chosen to 30 km

and the maximum wind speed is 35 ms- 1 , which yields:

Tmaxý3.4xl0"3 m2 s"?. The stratification is chosen to represent

the western Atlantic at 300 north (f=7,3x10"5 s-1). The wave

speeds of the first three modes are: 2.8, 1.5 and 1 ms- 1 and the

mixed layer depth is 50 m.

The stress pattern used here admits a solution on closed

form of Eqs.(7) and (8) (Nilsson 1993). The total internal wave

power, P,, is obtained by adding the contribution from each

baroclinic mode. In figure 1. P, is shown as a function of the

storm speed, U, for the case described above. The result is

based on a summation over the first 400 modes. The wave power in

the limit of a vanishing stratification (cn=0), Pi, is

illustrated as well. A striking feature is that Pw peaks for a

certain storm speed, say U,. This occurs when the wave numbers

of the free waves match those of the forcing. in the vicinity of

U, a resonant coupling between the forcing and the waves is

achieved.
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When U is increased above Ur, the wave numbers of the

excited waves have to diminish in order to keep up with the

storm. This decouples the forcing and the waves, and wave power

declines. For speeds much larger than Ur the wave lengths of the

excited waves exceed the dimension of the storm. The wave power

is then essentially determined by the time that a fixed cross

section is exposed to the stress. In this regime P, scales as

1/U.

When U is reduced below Ur shorter and slower waves are

excited. As U is further decreased the wave numbers of the

excited waves become so large that they are absent in the

spectrum of the forcing. Pw approaches zero, for decreasing U,

in a manner determined by the form of the forcing spectrum at

high wave numbers. It should also be noted that as U falls below

the value of cn for a given mode that mode ceases to contribute

to the wave power.

There are to differences between Pw and Pi that deserves

attention. Firstly, non zero cn increase the phase speed, which

implies that the storm moves at a higher speed when waves with

resonant wave numbers are excited. Pw will thus peak at a higher

storm speed than Pi. Secondly the amplitude of Pw is diminished

when the stratification gets stronger. In the present case the

Pw is mainly generated by the curl of the stress pattern, i.e.

by Eq.(8). The decrease in amplitude is attributed to the factor

(f/Uk) 2 , which is reduced when the strength of the

stratification is increased. Since Pw(n)cur! vanish when f

approaches zero it is not surprising that the curl of the stress

is most effective of generating waves when rotation is the main

restoring force.

Generally Ur may be estimated as
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|J, u •)l ( 0)

where L0 is the relevant length scale of the stress field. For

the stress pattern used here: L0 -l.6L, i.e. about 48 km.

The internal wave power generated by a moving storm have

many similarities with the wave power generated by a ship in

motion. The dependence of the wave power on the speed of the

wave source are analogous in the two cases. The explanation is

that the phase speed decreases with increasing wave numbers for

both wave systems.
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Figure caption: The internal wave power, Pw, (in Watts)

generated by a moving hurricane at 300 latitude over a

stratified ocean. P, is the rate of energy supply from the storm

to the internal wave field. The wave power in the limit of

vanishing stratification, Pi, is also shown.
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Abstract

An exact model to describe submesoscale, coherent vortices in a uniformly stratified fluid
is presented. The model allows for stratification of the eddy interior, so as to agree with
observations. The closed set of equations governing the evolution of the eddy on the
f-plane is derived. In the case that the interior isopycnal surfaces remain horizontal the
set reduces, for small Burger number, to the "lens equations" that govern the evolution
of uniform-density, warm-core eddies.

1 Introduction

Observations of a Meddy (Mediterranean eddy) by Armi et al, (1989) have revealed the
following features: It consists of an anticyclonically rotating lens of salt water (angular
velocity • -f/3) situated at a depth of about 1000m. The Meddy has a radial extent of
approximately 25km and a depth of about 300m. The density field within the Meddy is
stably stratified, albeit weaker than the exterior stratification. The isopycnals within the
meddy typically slope in a consistent fashion and change height dramatically at the edge.

Meddies are one particular class of submesoscale, coherent vortices, observations and
models of which are reviewed in McWilliams (1985). In particular lie introduced a simple
model of a steady circular vortex that may be stratified in the interior. The model is
underdetermined - there is one more unknown than there are equations - and one
is free to prescribe an "eddy-like", monopolar pressure field, from which the azimuthal
velocity and stratification follow. The boundary of the eddy in this model is, however,
ill-defined. Other models assume the interior of the eddy to have either constant density
(Gill, 1981; Dugan et al, 1982; Ruddick, 1987), or the same density gradient as the
exterior (Zhmur and Pankratov, 1990, Meacham, 1992). Gill's (1981) study dete•rmines
the shape and exterior velocity structure of a (basically 2D) elliptical eddy based on
quasigeostrophy and hydrostacy assuming the potential vorticity to be constant in the
exterior. This approach is extenied by Zhmur and Pankratov (1990) and Meacham
(1992) by considering 3D ellipsoidal regions with different but uniform potential vorticity
in the interior and by matching interior and exterior solutions. In Ruddick's (1987)
study the eddy is residing at the interface of two infinitely deep and therefore motionless
layers. Attention is consequently concentrated solely on the interior dynamics. Dugan
et al.'s (1982) model also concentrates on the interior dynamics, assuming somewhat



unrealistically that the velocities in the exterior, stratified region vanish. In our model
a similar approach is taken, except that the exterior fields are instead considered to be
unresolved (and solvable by e.g. the approach taken by Zhmur and Pankratov, 1990).

In order to describe the observed interior stratification a simple, exact model of an ellip-
soidal, stratified eddy in a rotating stratified sea is proposed below. In this model the
eddy is enclosed by a surface of vanishing perturbation pressure, and the velocity and
density fields are linear, and perturbation pressure field quadratic functions of the spatial
coordinates. These have time-dependent coefficients whose time evolution is determined
by a closed set of ordinary differentil equations, that can be solved explicitly in particular
circumstances.

2 Exact stratified eddy model

Consider the inviscid Navier-Stokes equations on the f-plane, scaled with 'external' scales:
reference density Po, Coriolis parameter f and reduced gravity g' = gf, where g denotes
the acceleration of gravity and c the scale of the overall density perturbation relative to po.
Regular perturbation expans'on in t leads, in lowest order, to the following dimensionless
equations for a Boussinesq fluid:

Du _ _ p
D u 49 P( la )

Dv Op
- + u = 4, (1b)

Du, Op" -B+ = ( P/) ' (1c)

where DIDI denotes the material derivative. Because both particle and phase speeds
of disturbances are much smaller than the speed of sound, and also because the vertical
scales of motion are much smaller than the scale height of the ocean (which exceeds its
depth), the ocean is an incompressible fluid:

V. u =0. (Id)

and hence Dp
Dp
Dt 0 , (le)

Here u, v, w are the velocity components along x, y, 2 directions in a Cartesian frame of
reference whose origin is located at the center of the eddy; p and p are the density and
pressure fields expanded about the uniform and linearly varying reference state respec-
tiveiy. The eddy is considered to exist within an enclosed region exterior of which tile
fluid is assumed to be linearly stratified: p,(-) = -zN 2 /f 2, to which the exterior pressure
field p,(z) is hydrostatically related. Here N denotes the Brunt-V~iisili frequency, defined
as N = -g/podp/dz. It is usefull to define perturbation pressure and density:

P'(", t) = A(x, t) - p,(z). (2a)

p'(x, t) = p(x, t) - P,(,), (2b)

v,1'ich are norzero in the interior only. The edge of the eddv ib enclosed by a surface on
which the perturbation pressure vanishs: p' = 0.
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While considering the motion of a homogeneous water mass in a paraboloidal basin Ball
(1963) showed that the centre of gravity may execute inertial oscillations, independent
of any changes in shape of the free surface. His analysis was rointerpreted in a reduced
gravity context and applied to model (uniform-density) warm-core, surface eddies by
Cushman-Roisin et al. (1985), Young (1986), Cushman-Roisin (1987) and others. It can
be shown that the subsurface, stratified eddy considered presently may likewise execute
inertio-buoyancy oscillations as a whole, independent of any changes in shape, orientation
and size that it may exhibit. These motions of the geometric centre are here ignored
however. Ball's (1963) result was based upon integral considerations. Young (1986),
aiming to give a complete description of the motion of the warm-core eddy in terms of
integral quantities like the centre of gravity and moments of inertia, concluded that not
enough such integral relations exist. Rather, by specifying the velocity and height fields
to consist of low order polynomials with time-dependent coefficients the internal structure
of the eddy turns out to be describable by eight coupled ordinary differential equations,
termed the lens equations by Ruddick (1987). Young (1986) solved these, up to a final
quadrature; a last integration that can be accomplished in terms of elliptic integrals.

Several conserved quantities can be formulated for the equations governing a Boussinesq
fluid, Eqs. (1):

1) volume V
V J_ Ldx, (3a)

2) potential vorticity IH
(w + k), Vp,

where w = V x u is the vorticity and k a vertical unit vector. This quantity is materially
conserved and therefore, in view of the commutativity of the time-derivative and global
integration operators which the Boussinesq fluid exhibits, also its integral over the eddy
domain D is conserved:

fl I"( + k) Vp dx. (3b)

3) Energy E

E J D u u + zp + pe] dx, (3c)

4) the vertical component of the absolute angular momentum vector L.()

0) Xv- yu + 2(x' + y2 )dx. (3d)

As in Young's (1986) analysis this does not suffice to determine the complete iiternal
evolution of the eddy however.

Therefore we also employ a low order polynomial expansion of tlhe velocity, density and
pressure field:

uj(x, t) = u1,(t) X1, (4a)

p(x, t) = p,(t)x,, (4b)

O/x. t) = pO(t) + I P,j()' X•, (4c)

2I
2 ,,().r~x, (4c



where indices I.j E 11.2,31 and matrix e,, is symmetric. Substituting these expresmions
with nineteen unknown functionq of time it, I). we ohtain:

du. + t.,kU* + f.3 tuk, + P, + 6,31, = 0. (5a)

dp,

dT + u 0,p& = 0, (5b)

and
uk = 0, (5c)

where summation over repeated indices is implied and t,Ik and 6,, are the anti-symmetric
and Dirac-delta tensors respectively. These constitute a total of thirteen equations. The
six missing follow from the boundary condition expressing that a particle once residing
on the boundary remains on the boundary:

Dp'(x,1) = at p'(x,t) = 0.

Inserting expression (4c) in both the boundary condition (employing (4a) in the material
derivative) as well as the description of the boundary itself leads to two polynomial ex-
pressions with seven independently varying, spatial fields. When eliminating the spatially
uniform term between these two and subsequently requiring the separate vanishing of each
of the coefficients of the resulting polynomial with six spatially dependent terms leads to

A, + , + Oki =0. (5d)
~dt po di

This leaves us with a closed set of nineteen nonlinearly-coupled, ordinary differential
equations for as many unknowns, describing the evolution of an eddy in a uniformly
stratified, rotating medium having a different internal stratification.

No notion of applying the model to oceanic eddies (except the arguments to validate the
Boussinesq approximation) has been introduced up to now. The model equally applies
to laboratory eddies. However, if we intend to apply the model to oceanic eddies, the
observed disparity in horizontal and vertical scales L and H has to be brought into the
description. In such a case it is usefull to rescale the horizontal and vertical scales and
velocities separately and equations (5) change only by the appearance of the square of the
aspect ratio a = HIL << I in front of the acceleration terms in the vertical momentum
equation. For i = 3 Eq. (5a) simplifies to:

PAJ = -P,

where perturbation density p' = pýx,. Since the interior is less stratified than the exterior
(Dugan 0t al. 1982, Armi ct al. 1989) p!, > 0. The exterior density field is in this case
given by p,(z) = -Sz. with S = (NC 1) 2/(fL) 2 denoting the Burger number. This implies

, = P', - SJ 3,.

3 Special cases

3.1 Steadilj rotating stratififd rddy

*1t



A solution of (5) in given by the dist- shapled 1wriurbation presr,, field

I - :J). + 1(11 + III(.r + yV).
22

where utl = -Ull 4 0 and the cent-a' pressure pt haa bruiu determined by assiming
that the vertical scale H of the eddy is known. If also horizontal scale I. and interior
stratification p, are given the angular velocity f? can be obtained from

+ (P +) 
p

Recall that p3 > 0. As p3 is a sizeable part of N2/f 2 the right-hand side can be expressed
as a fraction of S. The vortex is necessarily a high pressure, anticyclonic eddy with
f !E (-1,0).

3.2 Oscillating pdanar eddy

Consider the caw that isopyenal surfaces stay liat: p, = p2 = 0. From (Sb) this implies
113= = 0 and uj -I/.1 3 dp:t/dI: horizontal tniformity of the vertical velocity

field. With the hydrostatic assumption, eqliation (Sd), for p,., and p!,, implies that the
horizontal velocities have no shear in the vertical u1 = u23 = 0. Consequently, again from
(5d), i cepop', where ca' is a constant, However. because of hydrostacy, p7/3 = -P'1,
and thus

I dp. I idpI3 P3&~

po dl = Al. ; p-3
For vanishingly small Burger number the right-hand side equals u33 = -ull - u22 and the
equations for U1i, 1412 U2 l,1 22P',1,p',P.,p•.2 and po become identical to the Lens equations
(see Cushnian-Roisin rt at 1985, 1987. and Young ,1986, correcting sonic misprints in
their equations).

4 Discussion and Conclusions

A complete set of equations, (5), describing the evolution of an interiorly stratified eddy
in a uniformly stratified, rotating mnedium has been derived. The set has been shown to
reduce to the lens equations in the limit that the aspect ratio and Burger number are small.
For this set, derived to describe constant density warm-core eddies, solutions have been
obtained, which show that the eddy executes simultaneous shape, size and orientation
changes that occur superinertial, inertial and either sub- or superinertial respectively
(Young, 1986). In the present application, where the surroundings is uniformly stratified,
inertial and superinertial oscillations are subject to radiative damping. Hence, it is likely
that only orientation changes will remain,

More detailed analysis of the equations needs to be performed. In particular the case
with sloping isopycnal surfaces needs to be addressed as this feature is suggested in the
observations of a Meddy (Armi cl at, 1989).
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CYCLONE-ANTICYCLONE ASYMMETRY

IN THE MERGING PROCESS

S. VALCKE and J. VERRON

URA 1509 CNRS, L.E.G.I. - Institut de Micanique de Gienoble
BP 53X, 38041 Grenoble C~dex, France

1- Introduction

Cyclone-anticyclone asymmetry is a striking feature which emerges from the observa-
tions of geophysical flows. Long-lived vortices in the atmosphere of large planets and
intrathermocline eddies of the earth ocean show a predominance of anticyclones. Rather
differently, oceanic rings created in the Gulf-Stream or Kuro-Shio regions exhibit a large
proportion of cyclones. Many dynamical differences between cyclones and anticyclones
are not. up to now. well understood. This is in particular the case with regard to a
basic eddy interaction process such as merging.

In their laboratory experiments in rotating tanks, Griffiths Pad Hopfinger (1987) ob.
served that, in an unstratified fluid, cyclones merged from all initial separation dis-
tances while a stability boundary was found for anticyclones. However. as they studied
geostrophic (weak) vortices, they expected to find no difference between cyclones and
anticyclones. The asymmetry observed was therefore attributed to a differential ef
fect of the bottom Ekman layer which caused cyclones to diffuse more rapidly thati
anticyclones. Their additional experiments in the two-layer stratified came supported
this hypothesis as they found no major difference between the merging of upper-laye-r
geostrophic cyclones and anticyclones.

Concerning theoretical and numerical investigations, the merging process has already
received considerable attention in the purely two-dimensional situation (Overmatn k
Zabutsky 1982, Melander et al. 1988. Dritschel & Waugh 1992). For the rotating easu.
Carton and Bertrand (1993) recently studied the effect of ageostrophy and found that
in a flow with finite Rossby number, anticyclones merge more easily than cyclones. As
far as rotating stratified flows are concerned, there has becn only few studies, mnostly
based on the quasigeostrophic (QG) approximation (Polvani et al. 1989. Masina L*
Pinardi 1993, Meacham 1994). In this framework, the work by Verron and V'lcke
(1994). hereafter VV. showed that the merging process may be strongly influenctud
by the stratification. However, in the QG approximation, no difference can be found
between cyclones and anticyclones. Pavia and Cushman-Roisin (1990) went further by
considering frontal eddies in the shallow-water reduced-gravity case. In particular. tteyv
found that cyclones and zero-potential-vorticity anticyclones were resistant to merging.
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In the present paper, a two-layer shallow-water (isopycnic) model is used to generalize
the study of the QG baroclinic merging by VV. This model allows the numerical siniu-
lation of a larger range of eddies without restriction on the Rossby number and include
the cyclone-anticyclone asymmetry. The general objective is to try to understand how
stratification can selectively affect the merging process of ageostrophic cyclones and
anticyclones. The layout of the paper is as follows. In section 2. the physical system
under study is presented, and VV's results in the QG case are recalled. In section1 3.
the present model characteristics and the initialization of the numerical experiments are
described. The results are presented in section 4. The discussion in section 5 considers
an interpretation of these results based on the interface deviation. The last section
summarizes the results and conclusions.

2- The physical problem and previous quasigeostrophic results

The physical system in which the merging problem is considered is a two-layer rotating
fluid. The undisturbed depths of the two layers are supposed to be equal (HI = H., =
H) and of different densities pi and p2. (The subscript 1 indicates the upper layer.
2 the bottom layer.) The radius of deformation, representative of the stratification.
writes A = Vrl/v'2fo where the Coriolis parameter fA is assumed to be constant and
9' = gAp/p measures the density jump. Ap, between the two layers, The bottomi layer
is initially at rest and the vortices are defined in the upper layer as two circular patches
of relative vorticity, w. of radius R (Rankine profiles denoted R'). In our case. the
Rankine profile is approximated by:

R• - 0[ 1 - O.(tanh4(r/R - 1) + 1)] (1)

where f is the maximum value of the vorticity in the core and r the radial distance from
the centre of the vortex k. The initial upper-layer velocities, assumed to be nondivergenit.
are then related to the streamfunction U'l0 by it = -O•',0/O and t' = 0re1 0 /ox with
Vi'0 given by

= (2)

In the QG approximation studied by VV. the evolution of this physical systemcl h'ei h.
modelled by the following set of equations written for Q, the potential vorticity PV*

DQ1  D W 1 (30-'"= D-' ,• + ~A-(r 2 - u')= 1'1 (:3,,

DQ2  Dr 1)
Dt -Dt W2 - - 0-)] =

Dissipative terms of the form V, = -A4V4w, were needed, in the finite-difference cotdi
used in the numerical simulations. to dissipate the enstrophy which tends to uccumhulat,
at the small scales.
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For the physical system described above, the initial PV in the two layers is:

Q1o = E R" - A-24,4o
k= 1.2 a(a

Q20 = +1,\'1i1 0  (4b)

This was denoted as the Relative Vorticity Initialization (RVI).

Because of the small numerical viscosity A4 introduced in the model, it was cbserved
that the vortices eventually merge for all d. the initial distance centre to centre. For thlis
reason, tI/T, the time required for merging nondimensionalized by the vortex titrnovvr
period T = 21r/Q, was considered to be the relevant vortex interaction factor.

In the RVI case. the merging was found to be strongly dependent on the btack-groltd
stratification. In fact. for any fixed d, the merging time t, /T was found to vary a lot with
the stratification parameter AIR. For example. for an initial distance dIR as large is
5.5, merging is obtained for t,/T :- 6,5 when A/IR = 3.2 while it is 4 times shorter whetn
A/R = 1.7. On the other hand. for A/R :5 1.5. the vortices never merge. Globally. the
merging was observed to be very much favoured for a restricted range of A/R. between
around 1.5 and 3.

Interpretation for this s.ale-deperidency of the merging was proposed which involves
competing effects between an attracting vortex shape effect and a repulsing hetonic
interaction, As A/R is decreased from oo to 0(1) values, the stratification weakens and
the term 1/2. A-2 ',i increases. This corresponds to an increasing "skirt" shape for the
PV of the upper-layer vortices Qlj~. i.e. a PV more and more important beyond the core
region. Equivalently. the interface is initially more and more deviated. Consequently.
the tendency to merge increases and tc/T gets smaller. This enhanced tendency for thi
vortices to merge as A/R decreases was called the "harotropic attracting shape" effect.

Concurrently. as the stratification gets weaker. the layers become very much couplvd.
The PV of the lower layer, Q20 = +1/2. A-olo, becomes important and influicnes tle
upper-layer dynamics. In fact. the RVI cast, corresponds to two PV vortices of one sign
in the upper layer and to two PV vortices of opposite sign in the lower layer. This i,
analogous to a configuration of two hetons as described by Hogg and Stominel (10853.
In the RVI case, the hetons have a finite core and Valcke and Verron( 1993) showed thit
for a weak stratification, the dynamical effect of the lower-layer vortices is to make thv
upper-layer vortices diverge from each other. thereby inhibiting their iwerging. Thi.
effect was called the "baroclinic repulsing hetonic" effect. In conclusion, the restricted
range of A/R of promoted merging is the result of the two competing effects.
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3- The model and the initialization of the numerical experiments

The numerical model used in this paper is the Miami isopycnic coordinate. primitiv,
equation model (Bleck and Boudra 1981) in an adiabatic two-layer flat-bottohi fornin-
lation. In the present case, the equations reduce to the shallow-water equations for each
!ayer of uniform density p, and of varying thickness hI,. This model employs an Arakawa
C-grid configuration and the version used in our experiments incorporates the rigid-lid
approximation, We assumed no bottom friction, thereby removing an eventual Ekmuan
layer effect. The numerical dissipation terms, A4 V4U or .44 V

4
1 , are of the biharmnonie

type on the velocity.

The physical system described in section 2 can be studied in this model by initializing
the corresponding velocity fields. Rest is imposed initially in the bottom layer and the
upper-layer velocities are given by (2). However, in the isopycnic model. the interfile-
deviation tj has also to be determined and this makes a problem to arise. If the interface
deviation is not in balance with the velocity field, it undergoes strong adjusteiments
generating gravity waves and disturbing the initial conditions in which we want to
study the merging process. Moreover, an initial interface deviation totally in balance is
dynamically inconsistent with our problem: the initial state would then be stationiary
and would not undergo any evolution in time. In the previous QG simulations, this
difficulty did not emerge as ql was a diagnostic variable given by rl = fo/l'( ,Q" - ',;-I
which comes from the geostrophic equilibrium (the development of the shallow-water
equations at the 0(0) in the Rossby number Ro = U/foL).

The interface chosen stems from a "balance model" developed, in this case, fromn th(v
shallow-water equations and considering the terms up to the 0(1) in RO . Taking the
divergence of these equations, the expression for V2p, where p is the pressure. can be
written. The noz0dimensionalization of this equation makes the Rossby number Ro and
Burger number, Bu = NOH' / f'L'. to appear. U. L. H and No2 = -go:p/p are
respectively the scales for the horizontal velocity, the horizontal distance, the vertical
distance and the vertical stratification. If Bu > 1, the dimensionless equation crni he
written:

V2p =w + 2RoJ(n, i) + O(Ro2 ) 15)

where J is the Jacobian operator.

When the lower-layer velocities are negligible compared to the upper-layer velocitivs. p
and il are linked by V2p = _pq.,V2 tj. Using this relation and keeping the terms up1) to
the 0(1) in Re. we get (in a dimensional form):

--L(fow + 2J(u. t)) 6)

Prelimainary experiments with only one vortex using the interface given by (6) wvre
made. They showed that for ageostrophic vortices with Re as large as Re = 0.5 the
adjustement of the interface deviation was always less than 4% (for 1 < A/R •_.
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For the strong cyclones (anticyclones), the initial interface was slightly underestimate
(overestimate). In the numerical experiments described in the next section. we itsed
the interface given by (5), being aware that it is uncertain, at this stage, how the slight
residual adjustement could influence the merging dynamics.

CO I I/ =
tc / T Quasigeostrophy

49 Cyclone
4.0 Anticyclone

Heron
regime

Merger

50 Hewnregime
rregime

0

30

X/R

O0 1 2 3 4 5 6

tc /TIT/R 5

Merger
50 - Heron regime

regime

40--

30 =
S/ [ 9 cyclone
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0° o - j -1 3 4 o

Fig.1 t,/T vs A/R in the two-layer case for cyclones (9/ 2 fu = 0.). antimye'IeOww
({/2fo = -0.3) and for QG vortices (0/2f0 << 1).

5.. .



4- Results of the numerical experiments

We processed to several merging experiments for strong cyclones (Q/2fo = 0.5) and
strong anticyclones (Q/2f 0 = -0.5) in a range of the stratification parameter 1 <
A/R < 5. The results are presented oln Figure 1. It shows the merging timne t,/T as
a function of A/R for two initial distances d/R. These experiments used it ilunerical
viscosity of A4/fqR 4 = 10-5.

Qualitatively, the same dependency of the merging on the stratification as iii the QG
experiments of VV is recovered. As a reference, the QG case is shown on the figure
for dIR = 4. As A/R decreases, the interface is initially more and more deviaited.
the tendency to merge increases and t,/T decreases. Concurrently, as the stratification
weakens, the layers become very much coupled and around AIR = 1 to 1.5, the repullsing
lietonic effect takes place: the vo'rtices never merge and t1 /T was set to m.

However. appreciable differences appear between strong cyclones and anlticyclon(,s. hi
the merger regime. the cyclones merge much faster than the anticyclones. For exanmphv.
for d/R = 5 and A/R = 2.5, the t,/T for cyclones is as low as half the t,/T for
anticyclones. Moreover, the hetonic effect is more important for cyclones than for
anticyclones appearing for greater A/R. It is interesting to note that these results can hv
interpreted in terms of stability of cyclones and anticyclones with respect to merging. III
short, three stratification regimes can then be identified: (i) for strong stratification. the,
cyclones and the anticyclones are equivalently stable; (ii) for intermediate stratification.
anticyclones are more stable than cyclones: (iii) for weak stratification, the cyclones
become more resistant to merging because the repulsing hetonic effect is stronger.

5- Discussion

The behaviours of the cyclones and anticyclones and their differences can he relited
to the initial interface deviation. In the QG case. the promoted tendency to iiif'rge
as the stratification weakens was interpreted by an interface initially more and morve
deviated. This interpretation is still valid for ageostrophic cyclones and aniticyclones.
We argue that this phenomenon is therefore due to the dynamics of the interface and of
the tipper layer only. To test this hypothesis. we proceeded to merging experimn'uts iii
the "equivalent barotropic" situation which is the limiting case when the bottom la h' er
gets infinitely deep. In that case, we get rid of the dynamical influence of the lower
layer. The results are shown on Figure 2. Note that A is then written as A = VIgVItI.N.

Comparing Fig. 2 with Fig. 1 for dIR = 5. we see that the behaviours of ageostrophi" ry -
clones and anticyclones coincide exactly in the two-layer and in the equivalent barotropi&"
cases for 2.5 < AIR < 6. For AIR < 2.5. the curves differ because no baroclinic cm'mter
effect of the hetonic type can be present in the equivalent barotropic case. The hypoth-
esis that the dynamics of the interface can explain the promoted merging t(eadei'y for
a decreasing AIR is then confirmed.
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Furthermore, the differences in t,/T between the QG case, strong cyclones and strong
anticyclones can also be interpreted in terms of the initial interface deviation i7. In the
expression for 77 given by the balance model (6), the ageostrophic term J(u, v) makes
the interface deviation (scaled by the vorticity f!) slightly more important for a strong
cyclone, and slightly less important for a strong anticyclone, than in the QG case. This
can explain why the cyclones merge more easily than QG vortices which themselves
merge more easily than anticyclones.

- /T WAR- 5

50

0.5),d aniyco e (f-20 = - .5)

mo~m

30

20

10

0 1 2 3 4 3 4

Fig.2 tcIT as a function of A/R in the equivalent barotropic case for cyclones (fQ/2,Iu
0.5), anticyclones (11/2fo = -0.5).

Similarly, we can give a tentative explanation of the differences arising between strong
cyclones and anticyclones in the heton regime by considering these differences in il. In
the QG case, the hetonic effect was related to the dynamics of Q20 for small A•R. The
lower-layer potential vorticity Q20, given by (4b), is in fact directly related to q by
Q2o = 1/2A- 2't 1o = qifo/H. The more the interface is deviated, the more important is
Q20, and the stronger the hetonic repulsing effect is. This could explain why the hetonic
effect for the strong cyclones is greater than for strong anticyclones.

Considering 7, the QG curve in the hetonic regime should be between the strong cyclone
and the strong anticyclone curves, but this is not the case. H5wever, it is important to
note that, at these small values of A/R, in addition of breaking the QG restriction of
small Ro number, ageostrophic vortices violate also the QG hypothesis of small interface
deformation with respect to layer thickness. This could be why the effect of the interface
deviation in QG case and in the ageostrophic cases are no longer directly comparable.

6- Summary

This paper presented numerical experiments on the merging of ageostrophic cyclones
and anticyclones, using an isopycnic shallow-water model. The vortices were initialized
by determining the initial velocity fields, and the interface deformation stemmed from a
balance model accurate to the first order in Ro. Qualitatively, the same dependency of
the merging on the stratification as in QG experiments was recovered; it was interpreted

7



in terms of competing effects between an interface deformation effect and a repulsing
hetonic effect. However, noticeable differences appeared between strong cyclones and
anticyclones. In a weakly-stratified regime, the cyclones were observed to be iuore
stable than anticyclones with regard to merging but the opposite was true for a stronger
stratification. These differences were related to the initial interface deviation which is
always greater for ageostrophic cyclones than for ageostrophic anticyclones.
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Advective and diffusive processes in baroclinic vortices
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ABSTRACT

Baroclinic vortices are studied analytically, taking viscosity v and thermal diffusivity K into account.

The direction of the meridional circulation depends on the Prandtil number Pr - v/K. If Pr > I there is

upwclling in the interior of the vortex, and the vertical heat diffusion is therefore inhibited by advec-

tion. The radial flow is inward in most of the vortex, which is compensated by outward flow in a viscous

boundary layer just below th'. surface. We particularly study the strongly nonlinear regime, when the

background stratification is much weaker that that of the vortex. In the limit Pr >> 1 we find that the

nonlinear equation governing the flow has a class of exact time-dependent solutions. In this class the

evolution of the vertical temperature profile is determined by the Burgers equation, while the horizontal

profile is determined by the Liouville equation. Both these equations can be solved analytically.

I. INTRODUCTION

Isolated circular vortices with a life-time up to several years are very common in the oceans. In
this work we study the slow convective meridional flow driven by viscosity and diff,,sion in a
warm-core baroclinic vortex.

The most important parameter determining the character of the meridional circulation is ihe

Prandtl number, Pr = viie, where V is the viscosity and K the thermal diffusivity. In water Pr

- 6. (The corresponding Schmidt number Sc = v1Kcc, where KC is the salt diffusivity, is about
5000 in the ocean.) However, in a realistic model one should use the effective turbulent transport co-
efficients, which are not very well-defined, but certainly much larger than the laminar values. The
correct value of Pr is then not known.

The previous study most closely related to the present work is the one by Flierl & Mied (1985).
They performed analytic calculations and numerical simulations of the meridional circulation and gra.

dual decay of a warm core ring, using both large and small Prandtl number (Pr = 10 and 0.1, re-
spectively). In the analytic calculations they used a simplified linear model, i.e. the stratification of
the density anomaly in the vortex was assumed to be much weaker than the background stratification,
so that the advection of the perturbed temperature field could be neglected, while the advection of the
background field was included. The found that the direction of tCe meridional circulation depends on
whether Pr is larger or smaller than unity.

In their numerical simulations Flierl & Mied used fully nonlinear balance equations, and the
nonlinearity (i.e. the ratio between the stratification of the density anomaly in the vortex and the

background stratification) was of the order 102. This may be unrealistically large, but the nonlinearity
in real vortices can clearly exceed unity (Monin & Fedorov, 1983). The simulations confirmed that
the direction of the reridiorhal circulation depends on the Prandtl number. They also showed that the
vortex decays much faster if Pr = 0.1 than if Pr = 10, which can not be explained from the linear

model.
These results indicate that a particularly interesting case is when both the nonlinearity and the
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Prandil number are large. The meridional circulation is then inward and upward in the vortex core,

hence the advection opposes the diffusion, prolonging the life-time of the vortex. In the present work

we will derive some analytic results for this regime. Assuming the Rossby number Ro to be small

and Pr >>, the dynamics can be described by a relatively simple. nonlinear equation earlier obtained

by Gill (1981) and Garrent (1982). We find that this equation has a class of nonstationary exact solu-

tions. In this class the vertical dynamics is determined by Burger's equation, which is integrable. The

horizontal temperature profile is independent of time and depth, and determined by the Liouville

equation, which can also be solved exactly. The solution can have the form of an isolated vortex with

no background stratification, which corresponds to a large nonlinearity, as in the numerical simula-

dons by Flierd & Mied.

fl. DERIVATION OF THE DYNAMIC EQUATION

We start the considerations from the three-dimensional Boussinesque equations. Using the
shallow-water approximation we replace the vertical component of the equation of motion by the

hydrostatic approxiration:

'4 = gpoaT, (1)
dz

where p and T are the pressure and temperature deviations from a basic state assumed to have

constant temperature and density, and ax is the volume expansion coefficient defined by p =

p 0(l-oai), where p is the total density. We assume that the Rossby number is small, ard the

flow circularly symmetric. Substituting the horizontal component of the equation of motion into the

incompressibility condition, we obtain

aw _ v2p _ ....V2 _v (2)
az P _~ yp02 V~2 Pa--=pd/ at pof2 at2P

where w is the vertical velocity, f is the Coriolis parameter, and the Laplacian here and below

only contains horizontal derivatives, i.e. V 2 = r-la/ar+a2 /ar2. The ageost,-ophic terms in the di-
vergence of the horizontal velocity or, the right-hand side of eq. (2) are caused by inertia and vertical
viscosity, respectively. (The horizontal viscosity is neglected since the vertical length scale is much

smaller than the horizontal one.) The same ageostrophic L,, also appear in the heat equation:

aW')T aT - I -T a
2

T+ + + (3)
a af p.f 2 az~ar p0 .2 atar J ar az2"

These equations must be supplemented by appropriate boundary conditions. Taking the lower

boundary of the domain to lie just above the Ekman layer an the bottom, we obtain

w wE = _hL-V2p at z =-H, (4)
2 pof

where hE.= (2v/f•)/ is the thickness of the Ekman layer. The surface is regarded as rigid, so that
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the barotropic Rossby radius is infinite, which is a good approximation in the cases of iri.erest.
However, we can not use a no-slip condition as at the bottom. Instead, the appropriate condition at a
free surface of a viscous fluid is that the normal derivative of the tangential velocity vanishes. If there
is a horizontal temperature gradient this condition is violated by the thermal wind relation (i.e. by the
geostrophic velocity), which is obtained by differentiating eq. (1) with respect to r. A viscous
boundary layer is therefore formed. The flow in this layer can be obtained by the same method as in

the usual Ekman layer (cf. Aristov & Nycander, 1994, for details). It is found that the appropriate

boundary condition is

w = 6ahi = V.2T ___V2ý2 at Z=O,
2f 2p0o az

where z = 0 is just below the boundary layer. This condition was also used by Flierl & Mied

(1985).
The temperature changes very little across the boundary layer at the surface, hence if the tem-

perature is held fixed at the surface, the same condition applies at the boundary of the domain, just
below the boundary layer. (This is not true for the heat flux: there is a jump condition for the vertical
temperature gradient across the boundary layer.)

Equations (l)-(5) describe two kinds of processes with different time scales. The first one is
spin-down of the barotropic component, and the second one is baroclinic diffusion and advection,
which is the main subject of the present work. The main assumption we make in order to separate
these processes and derive a simplified equation is Pr >> 1.

The typical time scale of barotropic spin-down is TE - 2Hffd.hE), while the time scale for ba-
2roclinic diffusion and advection obtained from eq. (3) is r, - 2H 2Pr/(fhE), where H is the ver-

tical scale of the baroclinic vortex (which may be much smaller than the total depth HO). We find
" -,ITE ~/- 2Pr/(hEIIo), so that unless the vortex is very shallow (i.e. HIHo very small), spin-

down is much faster than tho- diffusive processes. This means that the pressure perturbation decreas-
es approximately uniformly at all depths during spin-down, until it is zero at the bottom and the Ek-
man pumping ceases. We can then consider the baroclinic component in isolation.

The next step is to estimate the bottom pressure generated by the baroclinic circulation. It may
x: round that this is much smaller than the direct pressure perturbation obtained from eq. (1), and al-
so that the vertical velocity from th2 Ekman pumping caused by this bottom pressure can be neglect-
ed, provided that Pr >> I (Aristov & Nycander, 1994). Thus, we may set p = 0 at z = -H 0. Fi-

nally, the two terms on the right-hand side of eq. (2) are compared, using the time scale T'r It is

found that the viscous term dominates if Pr >> I. Equation (2) can then be integrated, using eq. (1),

which gives

w -gay V 2 T. (6)

f2

This result is then sub-tituted into eq. (3). In that equation we may neglect the term a2p/atar, since it
is one order smaller than the first term in the Rossby number. The result is

aT -vga[2T aT j1 1 ) T T a2T (7)
a-t 2 azar ar r rar ar)• +a j Z-
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which is our final dynamic equation. In the planar case (for a straight front) it has .'arlier been ob-
tained by Gill (1981) and Garrett (1982). The first and second terms on the right-hand side describe
the temperature change caused by horizontal and vertical advection, respectively. Assuming these
terms to be of the same order as the diffusion term (the last term), we obtain the estimate Ro - Pr-1,
confirming the consistency of the approximations.

We finally summarize the scaling region in which eq. (7) is valid: Ro - Pr-1 << 1, alat -

j,.2 and Ek << 1, where Ek - v/flu 2 . The ratio between Ro and Ek is arbitrary.

1I1. EXACT SOLUTIONS

We will now find a class of exact solutions to eq. (7) by separation of variables:

T = (r) F(r,z). (8)

Substituting (8) into (7), and setting the separations constant equal to ro2, where ro is an arbitrary
length that will be chosen as the vortex radius, we obtain

•F _vga ~F •
+ - = -- , (9)

Equation (9) is Burger's equation, which is known to be integrable. Equation (10) can be trans-
formed to the onedimensional LioiJville equation (Aristov & Nycander, 1994), which can also be
integrated. We will here use the solution
9' = 0, rý 0

Sr0
r:O rj r rO, r

cf. Fig. 1. The solution is continuous up to the first derivative, while the second derivative is discon-
tinuous at r0. This means that the heat flux and the radial velovity are continuous, while the vertical

velocity is discontinuous, according to eq. (6). This is permissible since we have neglected the hori-
zontal viscosity. In reality it will presumably lead to the formation of a boundary layer whose width
is of the same magnitude as the height H of the vortex, and much smaller than the horizontal scale.

For a baroclinic vortex with the horizontal temperature profile given by eq. (1l), the vertical
evolution is determined by Burger's equation. Qualitatively, a solution of this equation sharpens its

profile at places where aF/az is negative, until a chock wave appears that propagates steadily up-
ward. However, aF/T z <0 means that the fluid is unstably stratified, since u is positive, and
such a flow will therefore be quickly disrupted by Rayleigh-Taylor type instabilities. Physically rea-
lizable flows must have aF/az> 0 everywhere, and the vertical profile will then in general tend to

become smoother.
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Burger's equation can be solved by introducing the function 4 = exp(-p/2), where p' is
defined by /p'/az = (vcxg/lq 2)F. We assume that p' -+ 0 as z -- --. Using this substitu-
tion, eq. (9) is transformed to the linear diffusion equation,

ii = 2--=(12)
Sat .=KaZ 2' (2
I~

.vhich can be solved by standard methods. For iiiu.ration, we have done this with the initial condi-
tion F(z) = 0 at t = 0, and the boundary condition F = F. at z = 0. The corresponding con-

ditions for 0 are O(z) = 1 at r = 0, and aO'+)a2 C= ') at z = 0, where

C = vg aFt(2 KrJ). (13)

Solving eq. (12) by Fourier transformation. we- obtain after some calculations

F ý e , 2 -" - ---1 e x p (C z --C 2 k 11 -

F Irtz_ / (14)

where erf is the error function. This solution describes how a vortex is excited by heating the sur-
face. Its behaviour in various asymptotic regimes can easily be understood. There is a characteristic
time , = 1/(1•C2), and for t << te the solution is approximately

F = Fo 11 + er1_2j]._ (15)

This is the solutiun of the linearized version of eq. (9), with the same boundary and initial condi-
tions. Thus, before t. the meridional circulation is still too weak to affect the development, and the
heat is simply diffusing downward.

For t >> tc the heat advection is very important. There are then two different asymptotic

depth regions. At z >> ..(K) 12 (i.e. small depth), we obtain

F -a FO (16)
1 -Cz"

Thus, the upper part of the vortex is stationary, and heat advection and diffusion almost exactly bal-
ance. At z << .(,?)tý2 we obtain, using the asymptotic expansion of the error function.

F 2C~L 2 (anL)' `Cxp( ii).(17

This represents a diffusive front, where advection is not yet important.
In Fig. 2 we have plotted the solution (14), both before and after tc. We also show the linear,

purely diffusive solution (15) and the stationary solution (16). The general development is that the
full solution (14) follows the linear solution until this crosses the stationary curve. After that (14) is
approximately equal to the smallest of the linear and the stationary solutions, and everywhere smaller
than both.
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The pressure perturbation at the surface increases logarithmically with the depth of the stationary

region, as can be seen by integrating eq. (16). Thus, in the initial stage of the solution (14), before

t,, the pressure increases as '4t. After t, it grows more slowly, as log(t), but without bound (un-

less the depth of the ocean is finite). At some time the azimuthal velocity and the Rossby number
therefore become too large for the model to be valid. The reason for this is of course that the surface
is heated in this problem. If there is no heat flux into the vortex, the surface pressure can only de-

crease.
The meridional flow and the isotherms in the baroclinic vortices studied here are shown quali-

tatively in Fig. 3. Notice that the radial velocity is inward (toward the centre of the vortex) every-
where in the interior of the fluid. This is compensated by an outward flow in the boundary layer near
the surface, where the velocity is larger than the interior ageostrophic velocity by the factor H/hr.
(On the other hand, it is smaller than the azimuthal geostrophic velocity by the same factor.)

IV. DISCUSSION

In this paper we have studied dissipational processes and the induced meridional flow in circular
baroclinic vortices. This is one of the main candidates for an explanation of their gradual decay. (The
other one is radiation of Rossby waves.) These processes also determine the evolution of the three-
dimensional structure of the vortices, e.g. the profile of the thermocline and the relative importance of
the barotropic and baroclinic modes.

The main simplifying assumption of our analysis was that the Prandtl number is large. It was
found that unless the vortex is extremely shallow, the spin-down of the barotropic component is then
much faster than the diffusion time for the baroclinic mode, and that the bottom pressure excited by
the baroclinic mode has a negligible effect on the meridional circulation. Thus, the diffusive proces-
ses drive the vertical structure toward compensation, with negligible flow below the thermocline.

The meridional flow in the vortex core is upward and inward, so that the advection opposes the
diffusion. If the nonlinearity (i.e. the ratio between the stratification of the density anomaly in the
vortex and the background stratification) and the Prandtl number are both large, this can result in a
substantially longer life-time of the vortex, as seen in the simulations by Flierl & Mied (1985). We
here particularly studied this regime, and found that in the limiting case (with zero background strati-
fication) there exists a class of exact, nonlinear time-dependent solutions. The horizontal profile of
the vortex is then given by eq. (11), while the evolution of the vertical profile is determined by Bur-
ger's equation, eq. (9), which is integrable. We have also shown an explicit example of such an ex-
act, time-dependent solution.

Although the simplifying assumptions are perhaps not entirely realistic, this result should serve
as a valuable reference point for future modelling. It also has intrinsic interest, being perhaps the first
case where the profile of the thermocline can be determined analytically and self-consistently in a
nonlinear convection problem.
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1. In investigations of long internal and surface waves in the (wcean with
characteristic scales of the order of tens of kilometers one needs to take into
consideration tile effect of Earth's rotation. Such wave processes may be described
in the shallow water approximation because an average depth of the ocean h is
4 to 5 kin. If thle perturbation amplitude is not. too high, as is usually the case,
then such waves may be described, as was first shown in [I], by a generalized
Korteweg-de Vries (KdV) equation that is also often referred to as the Ostrovsky
equation

eqain(ut + Cou, + auu., + =u1~~ f lu/2c, (1)1

where the parameters for surface waves are; Co = v'qj, It is the total depth of the
basin, a = 3Co/2h, .1f = Coh /16, and f is the Coriolis parameter, u(x, t) being
the perturbation of free surface. (The expressions for internal wave coefficients
can be found, for example, in (1].)

Equation (1) anti its generalizations to tile case of deep ocean aws well as to
two-dimensional perturbations were considered in (2, 3]. The basic properties oif
solutions to (1) are surveyed in [41. It should be noted that, as shown in (2, 51.
eq. (1) has no solitary stationary solutions with zero asymptotic forms at the
infinity for negative-dispersion waves, for example, surface gravity and internal
wtaves in the oc'ean, Besides, no periodic ainalytical solutions have been found
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yet.. Some numerical solutions were constructed in [4]. These include a family of
siolutions which can be interpret.ed as at periodic sequence of pulses (whose form
resembles KdV solitons) between which the wave has a parabolic profile.

In this paper we show that solutions of this type may be constructed by
means of an approximate asymptotic procedure that is valid for both negative
and positive dispersion waves, The constructed solutions are verified by numerical
computation of their evolution within the frames of eq. (1). The conditions of the
existence of stable and unstable stationary periodic solutions are also revealed.

In conclusion we analyse some typical features of nonstal ionary dynamics of
spatially periodic perturbations with solitary pulses.

2. We now consider stationary solutions of the Ostrovsky equation mnentioned
above. It. is convenient to rewrite it in dimensionless form

U, + 3UU, - 211 = (2)

where 3 - -1 is the dimensionless parameter determining the type of disperison
(0) = - 1 for negative-dispersion surface and internal waves in the ocean and J1 = 1
for positive-dispersion capillary waves on the surface of a liquid or for oblique
magneto-acoustic waves in a plasma) and c is the dimensionless parameter which
is assumed to be small. Under the restriction of stationary progressive waves we
put "I(x, t) = u(x - dt) where c is the now unknown wave velocity. For this class
of solutions, we obtain instead of (1) a nonlinear ordinary differential equation

3+ - 6" = (3)

where the prime denotes differentiation with respect to the "travelling coordinate"
x - ct,

Let us represent the internal solution of this equation as an asymptotic series
expansion

u( ) = 11(W + e u ( ) +.

S= r'a + E 2c +, .. (4)
This solution transforms, at e = 0, to the exact solution of i KdV equation that
follows from (2) with a zero right-hand side. We take as a "zero approximation"
the soliton solution of a KdV equation:

uo(C) = -0-Y2sechW-y + d

co = -I-r2 + 3d (5)
The substitution of the series expansion (4) into e.q. (3) yields an equation io tihe
first approximatiun in leading order with respect to 6:

' I t I,• H
8-( It I + 3110111 - L, it, -1 + V~III()ci4"' 2

2



By integrating this expression twice we obtain

ul + 3u0'u t - I
4

-c I ly2 8eely_, + A4 + B, + -1ý 11n(eoSii'y (7)

where A anl B, are integration constants. This equation is silplifipd far from
the soliton crest for sufficiently large 4 thanks to the fact that. the function seclh-y
is rapidly vanishing to zero, As a result we obtain a simple second-order linear
equation with a polynomial right-hand side:

- -' -' + - -A - B, (8)
4 4 2

where B is a new integration constant. A forced solution of this euliation is
readily written in the form

Thus, with the "zero approximation" far from the soliton crest taken into account,
we can write the sought. solution to an accuracy of c':

We tow consider an external solution of eq. (3) which is sought. iii the form

it = ,(V( - w0) + 6 (1 1)

The substitution of this expression into eq. (3) verifies that it is its exact solution
for V = 62/36 and h = -c/6, &) being an arbitrary parameter associated with the
choice of the coordinate origin.

Consider a. periodic sequence of arcs of parabolas described by (11) wit h the
values found for o and 6 and period A. The "amplitude" a• i.e., the distance
between the trough and the crest of the wave, is expressed through wavelength:
ai = (e"A2 )/144. By choosing the reference point along the c-axis at one of the
crests, we can also express ýo through A: ýo = A/2.

Thus we obtain a remarkable result: The approximate solution (4) of eq. (3)
constructcd to an accuracy of c' far fromn the soliton crest is a wave with it
parabolic profile (10). At the same time, a wave having such a profile is an exact
solution of eq. (3). In other words, the approximate solution (4) transforms. at.
large •, from the asympt.otic form t.o the exact solution (11) if the free parameters

3
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conltainled in (10) are determined correctly. By equating th, elxpressions (10) and

(11) to the known values of a and 6 we find

d =- 07 -2

9 3

B 'I ,A4 -• 6 ;ý4 -=\• U2

Then. the approximate equation (3). to an accuracy of e'. has the form

.,) - •ech", + + [(6c. )2-(ij (12)

and the wave velocity is expressed by

23r 5/3• . 1' + .eJc, ( 13)

At this stage, the solution (12)-(13) contains three free paranmeters; -Y A and c1 .
It is necessary, however, to take into consideration the restrictions following from
eq. (2) for periodic solutions:

J u(x, t)dx =0 (14)

The substitution of (12) yields

A2  28y2 18)
+ --+ ll1-) (15)

(we proceeded from the fact that the wavelength A is much greater than the
characteristic size of the soliton I/- so that tanh(-yA/2) - I). Thel. finally. the
wave profilh and velocity are given by the formulas

+2 0 +2 ý( , )2 -(6

=-2'\ 3_ A 2 U
c'= 1202/ +e 1\2

A 72
Thuts, the ('constructed solution contains two indepehdent plaramleters ", and A
that are related only by thei condition -yA > 1. However, if we demand that
the condition (14) should be fulfilled in the zero-th ordler with respect to x- thel
these two parameters will be related Ib "YA = 18, which gives to a good accuracy
tauh(•A/2) ýz I.



3. O)ur results show that the constructed solutions are described by even funhc-

tions that. are symmetric both with respect to the so~itmoi crest-, and to para)o•ol
troughs. Tie latter circumstance enables us t., suppose that there exist. more com-
plicated stationary solutions with solitons both at the wave crests and troughs.
In constructing such an approximate solution we proceed from the formnuhit (12)
and (13) which describe a periodic sequence of arcs of parabolas (exact solutions
to (3)) and of solitons at their crests. The fields of the nearest. solit.ojir are in-
finitesimnal near parabola troughs and may be neglected. Consequrently. a local
solution is sought. iiear parabola troughs in the foirm (12), again, but, for other
values of -y:

"u(2) = -1zY•secl'•y - + + (if, - - ,] (17)

The soliton velocity doterrini ned by the parameter ýj and the local displacement
11 tit tire point f = A/2 must then coincide (the statiouarity condition) with (13)
that was found earlier, As a result we have

c- + 3d, = -/+ -+

3 2 3

iFrom this we find the relationship between -Yr and "•.

2 2 - 3 2

We now again regard tile restriction (14) that follows from the properties of
eq. (2). Taking into consideration that the complete solution contains two solitons
of different. amplitudes on a period. from (14) we find

-2+iir -+2E32yL + b9f- A - e21-i2 = 0
4 )1 2J16

Iin the zero approximation with respect to 6, from this follows

A =1801 +Yik 2 (9

And, in the next order with respect to c, we fir(] ci -= A'/72.
Removing, by means of tile found expression, c' from (18) and comhining the

latter with (19) we get a system of two equations for three paraireters -.. ), and
A. Supposing oiie of theni, for instaance A, to be inidepeindenrt wi, express throurgh

it two other parameters (t-o an Hccurmry of !F including):

36( 22A')\ 36( 4e-!A'1 )
•: "1 FT / 2r ) " l ;12--!1 (0
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4. For verification of the constructed asymptotic theory we performed di-
rect. numerical computations of the evolution of the found approximate solutions
within the framies of the basic Ostrovsky equation (2). For this purpose we elab o-
rated a Turbo Pascal program. Conservation of the total energy of perturbations
dlefine di as = I A 11( x, t)dx ., (21)

where A is the wave period. was chiecked in the course of calculationls. Directly
fromi (2) follows that. the. quantity E is the integral of motion; it. was Coniserve'd
in our calculations t~o an accuracy of about. 10-'.

Our calculations confirnm that the solutions dlescribied by the formula (16i)
for 8 = -1 and arbitrary e (up to rather high values, for example. (1.7) are
stable in the course of calculations and are in a good agreement. with analytical
theory. They remained stationary to a high accuracy in calculations for longer
than twenty periods and no tendency to destruction was observed. However, the
vvlocity of wave p~rop~agat~ion slightly differed fromn the theoretical valiues.

The calculations indicate that the shape of the wave, evidently, (1Colde1C1
weakly on the value of the parameter 6, while the wave velocity is a more sensitive
quantity which is determined the more lpre~cisely, the smaller this piarameter.

The approximate sgolutions evolved differently for /I = 1 and sufficiently largc
(greater than -0.3). In this case, the initial p~erturb~at~ions did not remain sta-k

tionary, instead. they were dlestroyed in the course of calculations demionstrat-ing
a roniplicateci dynamics. This fact may, evidently. be t~reatedl as the instability
of stationary solutions of interest with respect to smnall perturbations at. 0= 1.
(The constructed approximate solutions may. obviously, be regarded as some per-
turbed exact. stationary solutions.) It is also 'onfirmedl by the fact that. the time
of destruction of initial perturbations increased with decreasing e.

A similar picture of destruction of initial perturb~at~ions was observed for the
solutions with two pulses on a period (described by' the form~ulas (17) and (20).
The solutions proved to he unstable for any sign of ý3 and for arbitrary e.

As has been mnent~ioned. eq. (2) describes, in particular. surface' andI internal
waves in a rotating ocean with the dlisp~ersion such that. ;I = -I corresponds to
themi in dimensional variables. Thus, thme solutions which w('te found kLs Staflicl
ones actually refer to this type of waves..

5. Besidesi the stationary solutions considered above we' aklso hivvst.igatvd( spa-
tiall l)'%,priodic perturbations with nonstat ionary p~ulses on each period. In spite
of the' "ant i-soliton" restriction 12,5], we found that. soliton-type (llasi-st atit olmr %
solitary' waves mayw exist within the frames of eq. (2) with periodic boumndary
COI idht. ions. We revealed at, least two differenit regimies of lymlainivs of solitaryý
waves. The first. of thenm is slow interaction of a KdV soliton with a verY long'

6



quasi-sminusoidal wave of a relatively small amplitude. The soliton moves a little
faster than the sinusoid due to the nonlinear correction to its velocity and passes
consecutively through its crests and troughs. The soliton's amplitude increases
as it. is drifting from the crest to the trough of the sinusoid and decreases in

motion from the trough to the crest. This regime is described adequately 1) all

approximate adiabatic theory of the interaction of a KdV soliton with a smooth
external disturbance.

The other regime is dynamics of an initial KdV soliton at periodic boundary

conditions under the action of the right-hand side of eq. (2). If the right-hand

side of the equation is sufficiently small and the period is much greatcr than

the characteristic size of the soliton, then the soliton amplitude decreases in the

evolution, and a long trail having the polarity opposite to that of the soliton

is formed behind it. The original soliton eventually disappears and a new one,

whose parameters are almost identical to the parameters of the original soliton, is
born at. one of the trail slopes. Still further, this process is repeated periodically

so that a phenomenon that greatly resembles recurrency in the KdV model [6]

and in other related systems [7] is observed.

Thus, long-lived solitary patterns interacting with periodic perturbations may

exist. in the real ocean, with Earth's rotation taken into account. The energv

supply in such perturbations may be rather significant compared with the quasi-

periodic background. Further investigation of solitary patterns and their mod-

elling in laboratory conditions appear to be of considerable interest.

Thc work was supported by thr Russian Fund of Fundamental irscarrli (g.•nt

N 94--05-16759--a).
The authors are grateful to N.Knvatkma for preparation of this manuscript.
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Lagrangian dispersion in oceanic mesoscale
turbulence

Bach Lien Hua

May 4, 1994

Turbulent dispersion in oceanic mesoscale turbulence is addressed in this paper.
specifically its relation with the stratified aspect of the dynamics. It is often observed
that stratification induces a substantial variation with depth of the characteristics of
the turbulence of the flow. For instance, measurements of either eddy kinetic energy or
particle diffusivity in oceanic mesoscale turbulence exhibit large variations with depth
(Price, 1983, Owens, 1991). Yet a surprising observation of single-particle dispersion
from subsurface floats is that tile Lagrangian integral time scale TL exhibits rather small
spatial variations, both in the horizontal and vertical directions (Price, 1983; Rossby et
al, 1986). Can these observations be explained dynamically in the framework of stratified
geostrophic turbulence which appears to adequately capture many aspects of observed
geophysical turbulence (e.g. Hua and Haidvogel,1986; McWilliams, 1989)? This question
is tile primary focus of the present work.

A key idea is that, because of the steepness of Lagrangian velocity spectra which is
associated with the inverse cascade in geostrophic turbulence, TL is mostly controlled by
the variance of lagrangian accelerations < I "1 2 >. whenever intermittency is not too
large. Using familie.r ideas of balanced dynamics, we can derive an expression relating
< 1 1" > to the variance of gradients of ageostrophic pressure p and divergent velocity
field potential )c, which constitute the two modes of dispersion of geostrophic turbulence.
Fields of p and ) are statistically orthogonal at a given horizontal level while their depth
variations are anticorrelated because of the incompressibility constraint. This is reflected
in physical space by spatial patterns of both quantities which have comparable horizontal
scales and which are likely to be oriented at right angles with respect to each other at a
given level, while their variations with depth tend to compensate. Fig. I presents fields of
p and X at a given level in direct numerical simulations (DNS) of geostrophic turbuilenre
furred by thw baroclinic instability of a mean shear (Hua and McWilliams, 1994). l)epth
profiles of both modes of dispersion and of eddy kinetic energy from I)NS arv given in
Fig.2, illustrating the compensatiotn tendencies between the two modes of dispersion.

Using an idealized statistical model for the spectrum of geostrophic streamfunction,
which is isotropic, stationary, non-intermittent (quasi-normal) and assuming an ana-
lytical shape which is consistent with direct numerical simulations of forced/damped
geosstrophic turbulence, wv can relate < I j 11 > and henice T1. to a depthI-depeth'i't!
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coilibiluation of the varialnces of relative vorticity and stretching vort-icity at a given
leweq,

TL aS + bZ]!, (I)

where a and b are depth-dependent constants, S is the vortex stretching varian'e and
Z is the variance of relative vorticity. This relation illustrates the respective time scales
for the horizontal and pseudo-vertical Lagrangian accelerations. It is interestiing tu note
that the two components of potential vorticity contribute to the total dispersion through
combination of their respective variances, rather than through potential enstrophy, that
is the var'iance of their sum.

The aborte expres.io| for 7T1, does not imply a spatial uniformity of its distribution
with depth, nor do we find it in numerical simulations of horizontally homogeneouls
geostrophic turbulence. Our simulatons reveal that a variety of depth profiles of T7.
can be observed which strongly depend upon the way the geostrophic turbulence is
forced/damped. However, we have a square root dependence in (1) and since distrihu-
tions of vorticity and stretching variances tend to be anticorrelated with depth. their
combination is much more uniform than either one taken alone. Although the issue of
potential vorticity homogenization (Hoskins et al, 1985) is not our main point, in con-
ditions where the large-scale potential vorticity is observerved to bv ulniform, such as
in gyre-scale oceanic observations (Keffer et al, 1982) and inl numerical simulations of
wind-driven gyres (Barnier et al, 1991), we also have found numerically that the corre-
sponding spatial distribution of TL also tends to be more uniform both in the horizontal
and vertical (Hua, 1994),

The analytical predictions of our statistical model have ben assessed with a reasonable
degree of confirmation by numerical quasi-geostrophic turbulent solutions. For instance,
Fig.2 also displays the intercomparison between the analytical results and DNS of the
depth profiles of the two modes of dispersion, showing an overall agreement betweell both
approaches which confirm the compensating tendencies with depth of thie two modes of
dispersion. Fig. :3 provides the probability distribution functions (PDF) of the quantity
14/ = alW, where a2 is squared strain and wl is squared relative vorticity (lina, 1994').
The quantity W has been shown by Weiss (1991) to play a central role in turbulent tracer
transport and the analytical prediction (continuous curve) captures well the enveloppe
behaviour of the PDF observed in the DNS. Both are significantly disctinct from a
gaussian distribution (dashed line).

Intermitteicy seems to present the largest source of discrepancy with our analytical
approach, but one canl argue that oceanic inesoscale turbulence, which is primarily forced
by baroclinic instability in presence of difrerential rotation (4: effect), involvw interurit-
teuncy levels which are significantly less than those usually observed in f-plane turlidule
(lecay (Bartello and Holloway, 1991).

Thus t lie main result of this work is that for a moderate intermittency of the geostrophic
turbulence forced by baroclinic instability, the effective dispersion results from both hmur-
izontal turbulent transport and from divergent transport effects due to the stratified
nature of the flow. These effects constitute the two modes of dispersion of geostoplhiic

ctrrbulence.
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Captions

Fig. I. Fields of ageostrophic pressure p (a) and divergent potvntlial x
(b) at the top of the water column for an exponential strau.
ification profile. The spectra of their respective gradients
correspowl to Fig.3b.

Fig. 2. Vertical profiles for a constant stratification profile of (a) kinetic
energy E(z): (b)< Ijplj > /F (continuous line) and <
1f%7"l > /E (dashl-dotted line) and their respective quasi-

orznal estimates (dotted line) and (dash-star line).
Fig.3. Pdf',s of the generalized centrifugal force divergence R' -721:

(a) as observed in a numerical simulation wilh small in-
termittency (montinuous line); (b) as given by analytical
results (dash-dotted liie); (c) for a Gaissian distribution
with equal variance (dotted line).
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Abstrat for: MhE FOURTH INTERNATIONAL SYMPOSIUM ON STRATIFIED FLOWS

LARGE AMPLITUDE ANOMALIES IN

BAROCLINIC ZONAL FLOWS

By

K Helfrich and J. Pedlosky

A new manifestation of baroclinic instability is obtained by examining the
dynamics of long waves in a baroclinic zonal current when the current is marginally

subcrilcal to long waves and when the long waves are the most unstable waves in the

spectrum. This can occur when the width of the current is less than the Rossby radius of

deformation.

We employ the classic two layer baroclinic model on the P plane in which the basic

state is a jet-like shear flow initially limited to the upper layer,

The investigation cf the weakly nonlinear formulation of the problemI leads to an

amplitude evolution equation for the amplitude of a" long" anomaly, A, as a function of
d-velopment time, T, and long zonal space scale 4, and when appropriately scaled it

becomes

d'A d'A 04'A I d'A 1

The meridional structure or the anomaly is given by the solution of an eigenvalue

problem in which the eigenvalue is the phase speed, co, of the propagating anomaly, In

particular the eigenvalue is a double root for co which explains the second order in time

form or the evolution equation.

Solutions of (1) in the form of solitary waves can be found. We have been able to

interpret the solitary wave as a propagating region of enhanced instability. When the

amplitude of the solitary wave exceeds a critical value the combined flow (solitary wave

plus jet) becomes locally unstable, The instability manifests itself either as a splitting of the

solitary wave, emitting two daughter solitary waves, or as an explosive instability which
does not equilibrate within the asymptotic theory. This nonlinear instability suggests a

suberitical bifurcation of the original flow.



Direct numerical calculations or the full quasi gcostrophic equations reveal that the

explosive instability is captured by a new state in which a domain of strongly altered zonal

flow is embedded within the original basic flow. In the lower layer where the basic flow is

weak, this new state contains a latitude band of recirculation with uniform potential

vornicity, q2, see figure land 2. The initial value problem shows that this zone emerges

from a narrow layer along the boundary of the jet within the channel domain of the

problem. This fluid then fills the zonally limited region of uniform q.

In agreement with our view of the process as a subcritical bifurcation the structure

of the new state has been successfully reproduced by finding conjugate solutions of the

equation
q. - Q(V.), n=l,2 (2)

The functional forms for Qn are taken to be the original potential
vorticity/streamfunction relations except in a domain in y, determined by the calculation, in

which q2 is uniform for y > Yo. The solutions agree well with the results of our complete

numerical calculations.

These conjugate solutions representing the locally altered zonal slate appear to be

attractors in the sense that any locally supercritical perturbation, not only the solitary wave,

will produce the final local flow described by (2).

We suggest that these large amplitude states may be candidates for atmospheric

and oceanic persistent anomalies,

1 Helfrich, Karl R. and J. Pedlosky 1993 Timc*.Dependent isolated anomalies in zonal

flows. Journ.Fluld Mech vol. 251 377-409
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Characteristics of the instability in a surface boundary current

D. Obaton G. Chabert d'iflires
Equipe Coriolis, LEGI.EMG, BP 53, 38041 Grenoble cedex 9, France

1. Description of the flow

The stability of a surface boundary current is studied in the laboratory with
background rotation. The buoyant current propagates under the action of gravity other a deep
passive dense water. It is deviated by the Coriolis force and then follows the wall of the tank
letting it on the right. Under certain circumstances it becomes unstable.

Experiments are conducted on the big rotating platform of the LEGI-IMG, Grenoble.
Salted water filling the tank is first driven in body rotation, then the current of fresh water is
initiated. The source of the current is located by the surface, perpendicularly to the wall. It
has a triangular section to allow the fluid to be in geostrophic equilibrium, considering that
the initial velocity is uniform (figure 1). As a consequence, potential vorticity is well defined
and not uniform, it increases away from the wall due to decreasing current thickness. A sink
is located downstream of the source and removes the current before it starts a second circuit.
Therefore the current is of constant volume and constant flow rate. It is mainly laminar,
expect for the nose not considered here.

The ratio of the two layers depth ho/H is typically 0.1 (H is the total depth).
Dimensional quantities that can be varied are the flow rate Qo, the current width Lo and the
thickness of the light fluid at the wall ho, all three taken at the source. The rotation of the
tank, then the Coriolis parameter f, and the density difference g' = g (p2-p,)/pi are also
changed. The molecular viscosity of the water v is added to those quantities.

Taking accotunt of the viscosity, the current is governing by three non dimensional

parameters. Because a baroclinic instability is expecting, the Burger number is considered

Bu = g'ho/f2L2  0.10 < Bo < 0.89.

The viscosity is introduced by the vertical Ekman number

Ek= v/fh02 0.2 10-3 < :A < 8.1 10-3.

The aspect ratio of the current 3t the source is added to those two parameters

ho/Lo 0.05 < ho < 0.64.
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Figure 1. Experimental apparatus and dimensional quantities of the flow.

When the flow becomes unstable, there is a local increase of the width of the current
at sonic distance from the source. At the front, a cyclonic eddy appears due to the horizontal
shear with the dense passive water. At the •ame time and the same place, the current thickness
increases near the wall. Then an anticyclonic eddy appears inside the flow. The lower layer is
little affected by any movement: velocities are naught or negligeable. As the anticyclone
develops, the interface increases below. And progressively, the lower layer is rotating with
that eddy. At the front the cyclone may disappear. The dipole cyclone-anticyclone and the
main current going around the anticyclonic eddy is called a meander in the experiments.
When the first meander exists, many others can appeared in the flow. They are all observed
downstream of the first meander i.e. further from the source. They usually appear nearly at
the same time, but after the first one has been formed. Their development is similar to the
development of the first meander.

As all these meanders increase in size and depth, they move within the flow in the
same direction, with a speed equals to 1/10 of that of the mean velocity. The stable flow and
the regular flow outside the meanders have streamlines parallel to the wall and are in
geostrophic equilibrium. In the meanders, this state is no longer checked.

Pi-de



These dipoles cyclone-anticyclones are very similar to those found by Griffiths and
Linden (1981, 1982) in their periodic coastal current. Vinger and McClimans (1980) and
McClimans and Green (1982) also observed that kind of structures in an experiment close to
the present one except for the ratio of layers depth that is 4-5 times greater than the one
studied here.

2. Results

It is shown that the stability of the flow depends on the Ekman number, and that there
is only one type of instability. For Ek < 1.5 10-3 all flows are unstable and for Ek > 3.0 10-3

they are all stable. This is true whatever the value of the Burger number is. Despite the fact
the ratio of the layers depth ho/H has not been much varied, it is possible that this parameter
has also a significant role.

Destabilisation c! the flow is linked to a minimum value of the local Burger number.
(The local Burger number is calculated over a section of the current.) This minimum varies
with the type of flow, therefore the Burger number has not to reach a critical value to
destabilise the current. Later and further from the source the formation of the first meander,
larger the Burger number. The destabilisation is also slowed when the Ekman number
increases. This instability is not due to a wave either coming directly from the source or
reflected by the nose of the current or by the sink. It can be due to the detachment of the wall
boundary layer. Formation and increase of the first meander can afterwards create a wave
which degenerate to the other meanders. These two last results are only suggestions and have
not been proved.

To characterise the instability, tranfers of energy are analysed across different sections
of the flow. These measurements are made, at nearly the same time, in the regular parts of the
current tnc,, the meander. These measurements are repeated from time to time when the size

"-)f the meander increase and before the velocity in the lower layer is significant.
"asurements of the mean vertical velocity of the flow (by the means of floats)

,,na C ..1e k er thickness (using a light absorption technique) are made. These two quantities
'A'. m .. Qi along the width of the current. Kinetic and potential energies are next calculated

.1 a s,. . ,. of the current ahead of a meander and in a structure. Then the ratio of the two
-. :rgies a . its evolution with time, when instability occurs, is studied.

30,,,,,,

20 21 revolutions
10- regular flow meander

50 15A2 25 30 35 40

Figure 2. Ratio of potential energy P to kinetic energy K at different sections in the flow.



Between the regular flow and a part of the flow containing a meander, the potential
energy increases (figure 2). This means that there is some kinetic energy that transfers to
potential energy. This result and the facts that 1) the thickness of the current increases into a
meander, 2) the Burger number taken either at the source or at some various sections in the
flow has not an important role on the stability of the flow, give a good indication that the
instability is essentially barotropic.

Oriffiths R.W., Linden P.F., 1981. The stability of buoyancy-driven costal currents. Dyn.
Atmos. Oceans, 5, 281-306.

Griffiths R.W., Linden P.F., 1982. Laboratory experiments on fronts. Part 1: density-driven
boundary currents. Geophys. Astrophys. Fluid Dyn., 19, 159.187.

McClimans T.A., Green T., 1982. Phase speed and growth of whirls in a baroclinic coastal
current. River and Harbour Laboratory Report. STF60 A82108, Norway.

Vinger A., McClimans T.A., 1980. Laboratory studies of baroclinic coastal currents along a
straight, vertical coastline. River and Harbour Laboratory Report. STF60 A80081, Norway.
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FRONTAL PHENOMENA OBSERVED IN TIDAL ESTUARIES
- VERIFICATION BY 3-D BAROCLINIC FLOW MODEL -

K. NakatsuJl', T. Sueyoshi" and T. Fujiwara"

" Dept. of Civil Eng. Osaka University, Osaka 565. Japan
* Dept. of Fishery, Kyoto University, Kyoto 610-10, Japan

ABSTRACT : Two cases study of frontal phenomena observed in Osaka Bay, Japan is
presented using a three-dimensional, time-dependent baroclinic flow model. The first case
study involves an cstuarine front of the Yodo River flood flow, in which buoyancy and earth's
rotation are the main force to lead strong geostrophic along-front jet. The second case study
involves a tidal front observed along the line connecting 20m depth points in Osaka Bay,
Stratified waters developed in the shallow basin and vertically well-mixed ones due to a
strong tidal flow through narrow straits meet with each other to make a remarkable front.

INTRODUCTION

Fronts are well-defined boundaries between water masses where horizontal gradients in
density and other fluid properties are large, These gradients are generated by buoyancy
according to river discharges and heat fluxes through the water surface. Recent development
of remote sensing techniques have enabled one to clarify the existence of frontal phenomena
in coastal seas; an estuarine river-forced front, a tidal front and a thermohaline front. Among
them, the thermohaline front appears between water masses of low temperature and low
salinity and those of high temperature and high salinity. It is characterized by a littlc
difference in density. (Yanagi, 1980) The former two frontal phenomena depend not only
on the source of river discharges, but also on the acceleration, friction and the rotation of the
earth. Onishi (1990) and Nakatsuji et al. (1992) pointcd out on the basis of remote sensing
by satellite that lots of effluent from rivers deflect anticyclonically in the Northern
Hemisphere and form a baroclinic boundary current that keeps the coastline on its right-hand
side. In regard to the tidal front across Osaka Bay from north to south, there are a large
number of f .d surveys conducted by Ueshima et al. (1987), Yanagi and Takahashi (1988),
and Fujiwara et al. (1989).

In the present study, the dynamics of frontal phenomena observed in Osaka Bay is
examined using a three-dimensional. time-dependent baroclinic flow model. In the first half,
the spreading of the Yodo River flood flows is examined in relation to the Rossbv
deformation radius. In the second half. the mechanism of tidal front is made clear in a strait-
basin system. (Fujiwara et al., 1994)

RIVER-FORCED ESTUARINE FRONT

Behaviour of Yodo River Flood Flow in Osaka Bay During High Discharge
Osaka Bay is an oval shaped bay with a 60 km major axis and a 25 km minor axis as

shown in Fig. 1. Osaka Bay has two-openings: Akashi Strait and Kitan Strait and the Yodo
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Fig. 1 Infra-red image of surface Fig. 2 Hydrograph of The Yodo River
temperature taken at 14:24 measured during Typhoon 8210.
August 2 1982 from NOAA. 6270 m3/s was recorded.

and Yamato Rivers are located at the head of bay. Osaka Bay, therefore, is a typical semi-
enclosed bay. The eastern bay is shallow than 20 m due to long term sedimentation from
rivers, while the western bay is 40 m- and 70 m- deep valley, because it is subject to strong
tidal flows through two straits.

Figure 1 shows the surface temperature distribution of Osaka Bay obtained by NOAA at
14:24, August 2, 1982 during tyhoon 8210 which was followed by a low pressure. The
maximum flow rate was 6,270 mn/s. The contours indicate relative temperature distribution
every 0.5'C with a resolution of 0.12'C. The infrared image was taken 6 hours 20 minutes
after the maximum discharge as shown In Fig. 2. Figure 1 indicates that the Yodo River
outflow advanced from the river mouth westward off Kobe and then turned southward along
Awaji Island. The longer axis extends some 55 km from the river mouth and the shorter axis
is 14 km maximum. The infrared image makes clear that the Yodo River flood outflow
behaves in a completely different manner from the behaviour of the Yodo River water at
nominal discharge rates. Most of Yodo River water has been consiucred to flow southward
on the basis of field surveys.

The horizontal scale of interest is the Rossby deformation radius rj = I(ep/p.,)gh(D-h)D
x f"' in which f is Coriolis parameter. As there is no measured value for river water thickness
at the river mouth ho during high discharge, we assume it to be 2 or 4 meters: hence the
Rossby deformation radius roughly estimated is rd = 7.3 km for h. = 2 m, or rd = 9.5 km for
ho = 4 m. The area occupied by the Yodo River outflow is 55 km x 20 km as shown in Fig.
1 and it is larger than the radius ra. This leads us to believe that the outflow is considerably
influenced by the rotation of the earth.

The Three-Dimensional Flow Model
The numerical model uses the hydrostatic and Boussinesq approximations and solves for

three-dimensional velocities (U, V, W) and buoyancy (B). Details are given in Murota et al.
(1988) and Nakatsuji et al. (1989). The stratification-dependent turbulent transfer is modelled
by the vertical eddy viscosity coefficient e: and eddy diffusivity K. in due consideration of
stratification functions. The neutral value of e5. is used 0.005 mn/s. A horizontal eddy
viscosity or diffusivity is used 20 m2/s. Freshwater of zero salinity flows near the surface
from rivers into the model basin initially filled with saline sea water of oq = 22. At the river
mouth, the time-variation of river discharges is given according to the observed hydrographs
of Typhoon 8210 as shown in Fig. 2. The water elevation is assumed to be zero and tidal
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flows are not taken into account in the computation. The model ocean of Osaka Bay is 58
km long and 54 km wide and a maximum of 52 m deep as shown in Fig. 3. The model's
resolutions are 2 km in the horizontal plane with eight vertical levels each between 0.4 m and
20 m thick. The time increment is 6 seconds.

Numerical Results on Estuarine Front
(1) Coriolis deflected coastal jet

Figure 3 shows the horizontal velocity and density fields in the 0.4 m thick surface layer
at 20 hours after the beginning of flood flow for the cases with and without the earth's
rotation. Contours of the density difference normalized by the initial difference, a, = 22 are
denoted by broken lines with intervals of 10%. In the case without rotation the Yodo River
plume spreads out over the sea water radially accompanied by a thinning in its vertical extent.
That is a typical plume-like flow, The isopycnal contours tend to fan out in a concentric
circle and the velocity vectors cross at right angles to the isopycnal contours.

On the other hand, in the case with the earth's rotation, the velocity vectors turn to the right
so alongshore velocities become dominant. The isopycnal contours are stretched out parallcl
to the coastline and even the outermost 10% contour is confined within about 10 km of the
shore. It is a clear indication of the river plume being a geostrophic current, since the Rossbv
deformation radius may be 10 km or less. The plume reattaches to the right-hand side coast
forming a coastal current, which is affected by the earth's rotation, Such a flow is often
visible in the river water effluent from the air due to colour contrasts in the different water
masses.

Figure 4 demonstrates the Yodo River plume spreading at the surface layer of 0.4 m after
35, 40 and 45 hours in consideration of the earth's rotation. The computed result at 35 hours
just corresponds to the time when the infrared image was taken from the NOAA satellite. The
Yodo River plume at this point behaves basically in the same manner as observed in Fig. 3.
It indicates that the Coriolis force may significantly affect the Yodo River plume spreading.
The point of interest here is that the isopycnal contours are close to each other at the tip of
river plume. Because of the geostrophic adjustment, the rotation may suppress offshore
spreading but accelerate alongshore spreading that leads to the formation of the frontal
structure discussed later. The front can be seen to propagate southwestward along the coast
of Awaji Island as a narrow current with a width of 8 km. The river plume continues to
propagate along the coast while maintaining a frontal structure even after he lapse of 50 hours,
although the speed slows down slightly with distantc, It is about 12 km wide and has a speed
of about 0.4 m/s. Such an alongshore Coriolis-deflected current is called "a coastal jet".

With rotation Without rotation
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Fig. 3 Surface velocity and density fields of Yodo River flood flow with
and without earth's rotation after 20 hours of typhoon 8210.
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Fig. 4 Horizontal flow and density fields of Yodo River plume spreading
after 35, 40 and 50 hours at surface layer of 0.4 m thickness,

(2) Three -dimensional structure of estuarine front
To better illustrate the three-dimensional structure of the intruding current, Fig. 5 shows

the vertical sections of alongshore current and isopycnals at 35 hours and 40 hours.
lsopycnals are drawn at intervals of 5% of a, = 22 in this figure. This section is taken 2 km
off and in parallel to the coast of AwaJi Island, which is shown by a solid line in Fig. 4(b).
The origin of xy a 0 corresponds to the coastline near Akashi side and values of xy increases
in the southwest direction. The river water transported by the westward haroclinic current
along the Kobe coast stays In the left-hand bulge of Fig. 5 where alongshore velocities
become very small. Because of the horizontal pressure gradients due to density gradients
(baroclinic mode) and surface gradients (barotropic mode) as well as the geostrophic
adjustment, the accumulated water forms an intruding current once more and flows along the
coastline. The velocity inside the current first accelerates awpv from the bulge and then slows
down near the head of intruding current. Judging from the velocity vector, its head may form
an advancing front often observed in gravity currents. The thickness of current is about 2 m
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Fig, 5 Velocity vector and isopycnals Fig. 6 Transverse velocity vector and
at alongshore vertical sections isopycnals at cross-sections of
showing vertical structure. intruding current at 35 hours.



when estimated on the basis of 5% isopycnal contour and about 3 m on the basis of zero-
velocity contour. The intrusion speed of the head between 35 and 40 hours can be estimated
b the distance travelled during 5 hours. It is about 0.42 m/s which is equivalent to 1.5 x
v(Ap/p,)gh (= 1.5 x C). The value is somewhat larger compared with the theoretical one of
1.4 x C and the experimental one of (1.09 - 1.16) x C which were obtained for a density
current overlying a lower layer with rotation by Stern ct al. (1982).

Figure 6 shows velocity vectors and isopycnals at 5% intervals at the cross sections marked
in Fig.6(d) which shows the horizontal flows and density fields at the surface layer after 35
hours, The spreading ranges from 6 km to 8 km horizontally and from 5 m to 6 m vertically;
its velocity is about 0.6 m/s. Figure 6(a) which corresponds to the tip of the front shows the
existence of a sinking current formed by an external fluid body as the spreading advances.
In Figs. 6(b) and 6(c), a current that expands offshore can he seen inside the front. The
experiments conducted by Stern et al. (1982) clarified the width of the current to be 0.4 to 0.5
times the Rossby deformation radius. which agrees with the present computed results.

As mentioned above, the river water spreading is characterized by the formation of a coastal
current through geostrophic adjustment. Figure 7 shows the variations ot the propagation
speed of the Yodo River flood flow plotted against the alongshore distance measured from
the river mouih, The intrusion speed tends to accelerate with distance before the river water
reaches the Akashi Strait. After staying at that region of s = 38 km, the accumulated water
begins to flow again and turn southwest. It is surprising that the maximum speed attained is
about 0.4 m/s even 53 km from the river mouth. After that, the intrusion speed drops because
the density difference between flood water and sea water is reduced. Its speed averages 0.35
m/s. Consequently, the flood water of the Yodo River reaches the Kitan Strait after only 60
hours after the beginning of flood.

In the present computation, the effects of tidal flow are not taken into account. It is of
course an important factor to determine the river plume spreading patterns. The tidal
modulation effects are discussed in another paper, (Nakatsuji et al., 1992)

TIDAL FRONT

Tidal Front Observed in Osaka Bay
Figure 8 demonstrates surface temperature distribution taken by MSS loaded in airplane by

Ueshima et al. (1987), The tidal flow at Akashi Strait is a final stage of eastward flow.
There is clearly a surface temperature contrast of almost 0.5 'C between the two sides of the
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Fig. 7 Propagation speed along the center- Fig. 8 Tidal front appeared in Osaka Bay
line of Yodo River flood flow. (from Ueshima et al.. 1987)



front across the center area of Osaka bay from north to south. The tidal front develops along
the line connecting 20 m depth points. One side of the front remains strongly stratified in
shallow basin affected by lots of river water effluent and heat flux through sea surface
especially in summer, while another side is vertically well-mixed due to a strong tidal flow
through narrow and deep straits. Yanagi and Takahashi (1988) reported on the basis of field
observation in summer that the differences in temperature, salinity and density are 1.5 TC. 4.0
%o and a, = 3 at 5 km intervals across the tidal front, respectively,

The Barocitnic Flow Model
In order to clarifying the tidal front, it is necessary to improve the precision of movement

and turbulent transfer in vertical direction. Therefore, the three-dimensional baroclinic flow
model used in the computation of estuarine front is reorganized. Main points of modification
are as follows; (a) model resolution of 1 km in the horizontal plane with 7 vertical layers
having thickness of 2, 4, 6, 8, 10, 15 and 15 m from surface to bottom and (b) the tidal flow
computation in which a cosine wave with a 12-hour cycle and amplitude of 38 - c at open
boundaries, and (c) flow rate of Yodo River, 205 m3/s and heat transfer thiough sea surface,
29.7 cal//s/mi in summer.

Numerical Results of Tidal Front
(1) Baroclinic flow pattern and tidal front

The computation results to be discussed here are those on the t tidal cycle, in which the
change in the density distribution during one tidal cycle becomes negligible small as compared
with that of the previous tidal cycle.

Figure 9 shows the velocity and the density fields of the surface layer (1 m deep from the
surface) when the eastward or westward flow through Akashi Strait reaches its maximum.
The contours of density are marked at every 10 % of the density difference between the river
and sea water where a, = 23. When the eastward flow at Akashi Strait is at its maximum,
the flow into Osaka Bay spreads in a jet-like form toward the southeast. The flow makes its
way in clockwise circular arcs along a 20 m-deep contour line toward the Kitan Strait.
Meanwhile the discharge from the Yodo River spreads southwest, running southward to cross
the 20% density contour line at a right ang!.= The jet-like tidal flow from the Akashi Strait
combines with this river discharge at the 20 m-deep point and continues southward.
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Fig. 9 Surface flow vectors and density distribution when

the maximum eastward/westward at the Akashi Strait.
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When the westward flow is at its maximum, the water flow can roughly be divided into
two: one running from the Mian Strait northward along the cast coast of Awaji Island, and
the other that flows northward, off the coast of Sennan. Water from the Yodo River is carried
by the tidal flow toward Kobe, a part of which flows into the Akashi Strait. It is worth noting
that the southeastward flow at Kino-se persists even when the tidal flow direction changes.
Kino-.se is the shallowest point in the western bay which is indicated by the cross mark in
Fig. 9. Between this southeastward flow and the flow in the inner bay, a discontinuous flow
is observed. If the density distribution in Fig. 9 is represented in finer contour lines. the
discontinuous boundary can be shown to be bands of different densities, that is a tidal front.

Figure 10 shows the density distribution at the cross-section of the tidal front, which is
indicated by the solid line in Fig. 9. The horizontal 0 point corresponds to thc 20 rn-deep
sea bed. The direction toward the inner bay (toward Osaka) is positive, while the direction
toward the outer bay (toward Awaji Island) is negative. In the inner bay, approximately 5 m-
thick stratification with a, = 22 or lower can be observed. The stratification is stable, rarely
affected by the change in the tidal flow. The area where the sea bed is deeper than 20 nm (x
< 0) is exposed to stronger tidal flows and, as a result, vertical mixing, occurs. In this area
a, is 22.5 or higher. Between these two areas. where (3 is more than 20 and less than 22,
density contours are almost perpendicular to the water surface.

Figure 11 shows the horizontal distribution of surface density and its gradient every three
hours. The gradient indicates the sharpness of the front, This figure shows that the tidal front
on this cross section is located at the location where the sea bcd is about 20 mn deep. The
density changes by cy, 2 over 7 kmn on this plane. The density gradient is the greatest when
the eastward tidal flow through Akashi Strait reverses westward. At this time the front is 2
km wide and q rises from the head to the center of the hay by (7 = 2. It is because the
eastward flow through Akashi Strait spread deep into the head of bay. Field data obtained
by Yanagi and Takahashi (1988) indicated the density change of c7, =3 over 5 km width of
the tidal front. From these comparison. thc computation results overestimate a little larger
than observation ones.



CONCLUSION

The river-forced front and the tidal front observed in Osaka Bay are examined using a
three-dimensional, time-dependent baroclinic flow model. Frontal phenomena arc
accompanied by the convergence of surface water to make well-defined discontinuity in
density and other fluid properties such as temperature, salinity and so on. In cases of an
estuarine front, on a larger scale than the Rossby deformation radius, the earth's rotation in
addition to the buoyancy are the major forces to make a strong geostrophic along-shore
current. Since contamination such as industrial and domestic waste products is discharged in
large quantities, the behaviour of estuarine fronts is very important to the environment of
coastal seas and estuaries. On the other hand, the appearance of tidal front is dependent of
stratification developed in shallow basin and vertically well-mixed water due to strong tidal
flows through straits. It plays an important role in formation of the baroclinic residual current
system, estuarine circulation system and also water qualities transfer in enclosed coastal seas
and bays. The research for clarifying the dynamics of frontal phenomena is, therefore.
necessary to understand the physical and bio-chemical processes and their economic
implications for good management.
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LABORATORY MODELLING OF GRAVITY CURRENTS ON THE SLOPE
IN ROTATING FLUID

A.G.Zatsepin and A.V.Semenov
(P.P.Shirshov Institute of Oceanology, Moscow)

The sinking of dense water along inclined oceanic bottom
(shelves, slopes) is remarkable process responsible for the
formation of oceanic bottom water masses and ventilation of the
deep ocean. The dynamics and other specific details of this
process are poorly known, because of the complexity of its
investigation in natural conditions. In this short report we
present the main results of preliminary laboratory studies and
accompaining theoretical analysis of the basic dynamical
features of the above-mentioned dense water flows. The influence
of Earth rotation on the sloping gravity currents is simulated
with the help ot rotating table. The significance of proposed
studies is conditioned by the important role of Earth rotation
on the dynamics and structure of mesoscale and large scale
oceanic dense water flows. To our knowledge there is no
comprehensive study of gravity currents along sloping bottom in
rotating fluid. Nevertheless we would like to mention the papers
and reports by Griffiths (1983), Davey and Killworth (1989),
Whitehead et al (1990) dealing with some aspects of the problem
involved.

In 1993 we performed a series of experiments with gravity
currents on the sloping bottom (angle of the slope - 39 deg.) in
the rectangular organic glass tank 50*50*20 cubic cm. filled by
salted water and positioned in the center of the rotating table.
Sloping bottom was simulated by the surface of the conical body
which peaked up just in the center of the tank. Gravity currents
were produced by one of two local constant flux sources of more
saline water. One of such sources was placed on the peak of the
conical body (central source) and the other - on its sloping
side (lateral source). In case of experiments with the central
source nearly axysimmetric gravity current was formed with a
front propagating down the slope. Distance L of the front from
the source was measured as a function of time t, volume flux Q =
0.8 - 6.2 cm^3/c, reduced gravity g* = 0.4 - 4.8 cm/c^2 and
Coriolis parameter f = 0.83 - 2.0 1/c. The results confirmed the
self-similar theoretical solution which was obtained by
Dr.A.G.Zatsepin for one-layer model approximation. In this model
the balance between three main forces (downslope gravity,
Coriolis and friction forces) was taken into account. The
success of one-layer approximation was due to the small
thickness (3-8 Eckman lengthscale) of the gravity current
compared to the depth of the upper layer.

In case of experiments with lateral source gravity current
was spreading predominantly anticyclonically (to the west) and
down the slope because of friction, Three different regimes of
the current were observed: a) "train" of quasi-isolated
vorticies (large Q and small g* values), b) train of fronts
(small Q and large g* values) c) quasi-monolith current
(moderate Q and g* values). In case a) there was strong
mesoscale interaction between the thick gravity current and the
upper layer fluid, and the vortical structures in both layers
had predominantly cyclonical sign. In the case b) gravity
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current was thin and the wavelength of observed frontal
structure was close to that of Eckman layer instability
(Whitehead et al.,1990).

One of the aims of the future study of sloping gravity
currents in the rotating fluid is to clarify the conditions
under which the flow produced by local constant flux source
breaks down to a series of discrete vortical or frontal
structures and to describe physical mechanisms of their
formation.
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Abstract
This communication outlines laboratory work performed in modeling narrow cturrent-

topography interactions under the influence of rotation and stratification. The experiment,,
employed a surface-driven source-sink technique in an annlular geometry, and used a single cosine-
squared topography of revolution. The currents generated possessed a Gaussian-like horinzontal
profile decreasing linearly with depth. Owing to stratification effects. the current quickly
developed instabilities characterized by cross-stream meanders and evenly-distributed azimuthal
cyclonic vortices. Particle-streak photographs showed overall qualitative features of the fluid
mionoi in a 120ý test section, both with and without the presence of topography. Particle-imaging
techniques provided velocity and vorticity fields. Interaction with the topography demonstrated the
presence of both a cyclonic vortex and accompanying anticyclonic region in the obstacle lee.
decreasing in strength with elevation. Comparisonr with data collected front field observation.s, i,
also discussed.

1. Introduction

Motivated by recent field studies at Fieberling Guyot, an isolated seamount in the North
Pacific, the present communication outlines laboratory modeling of current-topography interaction
under rotation and stratification. For the most part, past physical modeling of current-topography
systems has dealt primarily with broad, uniform currents. The reader is referred to work by
laines and Davies (1980), and Boyer et al. (1987). dealing with stratification effects, and Boyer
and Zhang t19901 and Zhang and Boyer (1993) concerning time-dependent flows. Currently,
sonie numerical work has been performed relating to jets and topography. Examples include Spall
and R1ohinson (1990) and itaidvogel et ail. (1991). both involving jeis along coastal regions. and
Bannon t 1980), focLusing on barotropic jet -like flovws near an isolated obstacle. As narrow or ''jet-
lke" currents are quite common in natUle, the modeling of jet tolography interact il in a
laboratory setting is of interest.

2. Physical System and Parameters

Tile experimental facility is a large circular test cell (Figure I) measuring 180 cm in
diaincter and 20 cm in height. filled with fluid to a level H. Supported above the floor of the tank
rest Iwo concentric stRucturns: an inner Plexiglas disk, r,. and outer Plexigla.s ring. 1"-. ivc n [Ile
"C0tlell.-. aU filee-,.,l-fl'cc innll arl.l irCion is., for'medCLI bctwecn the t wo I caturcN. Fixed it i the iioici
wall o• the tank are lo inlet tube.,.. by which fluid is inntroduLcd into the facility at the samc lcvel is,

Ile d",k antId ring. A thin ;trip ofl sponge material aids 2i1 producing a radially" Utn i rnm lito\ a, 111L
the Surface of the ring. A circular array of elliptical holes is cut in the disk at a radius 1i. to dia"
this fluid frotm the tank, via a central tube. and recirculate it using a Illicr'-gear pump. Ill thi0
manner, a source-sink arrangement is established within the test cell. This same facility was used
h\ Zhanp el al. 1 1994). Further. the entire systern is placed upon a turntable, capable of solid bod\-
0otatliton A2) at a Coriolis parameter f = 2Q.. Under rotation, the fluid entering the annt, huu is

deflected under Coriolis forces. thereby creating a GauLsian-like azitmuthal velocity distiribution
\itlhill the free-surfacc I'eCiont. Effectively, this approach simlulaL.tes a windl-shear forcilnl



possessing a particular cross-stream profile (Chen et al., 1992 and Boyer et al., 1993) A cosine-
squared topography of revolution can be placed in the annular region to study its effects on the
cunn'rrnt so generated.

Given the above facility, a set of dimensionless parameters can be defined to characteritc
the resulting flow, field. These are listed, along with laboratory ran'ee,. as

LI
Ro = =' 0.02 - 0.08, Rosshv number.

ID

1- =2.4(10-, Ekman number.fH .
N2FI-'S = " : -0.20 - 0).95. Burger nlUnlber.

hi, D = 0.1 21,noralized topography width and height.
H 'II

W- = 1.5, normalized width of the cutrrent.D

__ -0.5 ~ 0.5, normalized topography position relative to

the annular centerline.

where u,,,, is the maximuml strength of the current, h,, and D the characteristic vertical and

horizontal dimensions of the axisvmmetric topography. v the kinenatic viscosity of water. N =

(gApip,,H)II2 the Brtint-Viiislilii frequency, g the acceleration due to gravity. Ap the density

difference between the top and bottom of the fluid, p,, the mean density of the fluid. W, Ihe
characteristic width of the current and Yr the position of the topography relative to the annlular
centerlinc. Note that the topography aspect ratio, h,,/D was not matched in the present work,
Assuming appropriate values for Ro, E, and S (see Pedlosky, 1987). the flow can be shown to he
hydrostatic, hence neglecting this requirement. It can be shown that such a system simulates
oceanic currents in the vicinity of a tall topography with the Ekman number based on an eddy
viscosity (Zhang and Boyer. 1993).

3. Experimental Techniques

The fluid employed was linearly stratified with saltwater using the two-tank method
described by Oster and Vamnamoto ( 1963). Following this, the tank wits slowly spunL-u1p to •olid
body rotation (an increase on-the-order of 9.3(10)"3 rads"1 every minute) to prevent mixing. To be
conPCrV\ativc, four hours elapsed prior to initiating the pumping system to allow the facility to reach
the staLte of solid body rotation. This done, the current took approximately two additional hours to
reach a state of quasi-equilibrium. For the experiments, f, H, D. hl, and D were held fixed.
forcing E. S. h,,/D and D/h to remain constant. The flow rate and position of the topography was
varied. i.e., changes in the flow with variable Rossby number and yT/D values were investigated.
W%,/D was approximately constant.

The flo,v wits visualized by employing neutrally buoyant polystyrene beads of diameter 0.5
mao and umea,. density p, = 1.043 kgcm- . Given a small density difference approximialing Ap. a
uanafornm distribution of particles with height was achieved. The beads, in turn, Were ilhI1l minated

Silth either vertical or horizontal light sheets of thickness -0.5 cm. In the first case. timne-exposed
photograplhs were taken with a, 35 mm1111 camlerlail Mounted in the rotating frame. A comput~ltr control -
iilechanisi alhloweid simolta le e, Is light and camera control. Commanding the light, to follow% ,i
"on-ofton" pattern during -. .ire produced a set of "dot-dash" particle-streaks in each image.

This provided it nle;ins,, to( rer,.)i d-oth the direction and ;peed of each particle. A video cameC,,.
1OUntel1Cd in the i'tltline Iramie Wias aiso usCd Io record r-eall-tilmC por-tionS of the velocit\ field



LUsing Diginiage, a particlh-iiiage processing syslem developed at Cambridge University. these

rceordings were digitized frame-by-frame in an effort to particle-track the flow during each video
framle, Using a two-dimensional interpolation scheme, velocity values are collapsed onto i
predetermined grid. Files were then produced which generated real-time "snap-shots" of both the
velocity and vorticity fields. The reader is referred to McGuinness (1994) for a more detailed
explanation.

4. Experimental Results

4. I Homogeneous Fluids: A Summary
As a precursor. homogeneous fluid tests were conducted. Parameters adjusted included the

flowrate, rotation speed, current width, and position of the topography relative to the current. As a
function of the external parameters. findings showed the generation of both a stable and unstable
Current which was vertically uniform, hut possessed horizontal qhear. An analytical model of the
current was developed which provided an accurate scaling for the profiles of the azimulthal
velocity In the presence of topography, the characteristic flow-field possessed a large anticyclonic
deflection in the obstacle lee which was a function of the upstreaml local vorticity. This feature was
altered by moving the topography within the annular region, relative to the current centerline.
Some numerical work was performed, providing a satisfactory comparison with laboratory
findings. Zhang el al. (1 994) provides a detailed description of this work.

4.2 Stratified Fluids

4.2. I Narrow current generittion ivithiut topugraphv
After initiating the source-sink forcing, the motion along the free-surface develops a

Gaussian-like azimuthal profile. Gradually, the entire fluid column accelerates due to rotation and
stratification, producing an unstable current, with the strongest speed being found at the surface
and decreasing with depth. Charactei istic in all of these flows are cross-streamn instabilities. These
wave-like meanders eventually reached a quasi-steady state, combined with approximate equally
distributed cyclonic vortex cells arranged azimuthally, but concentrated left of the main flow.
facing downstream. Possessing, sneed on-the-order of 1/3 that rf the current, these features
advected in a cyclonic manner witnmn tý-' tank annulus. Shown schematically in Figure 2 (for a set
of five vortices), the number of vortices decreasing with increasing Ro, (see also, Chen et al..
1992). Further, Figure 3 displays a particle-streak photograph of the test section taken at a fluid
level i)a1 /H = 0.53, z being the vertical coordinate with the origin fixed to the floor of the test cell.
In the caption, the subscript "c" denotes the use of W, as the characteristic lcngthscale, for
topography is absent. Note the disk and ring edge, along. with the two vortex cells (see arrows).
The current can be seen meandering in a cross-stream fashion. Flow is from right to left.

To further understand the current, data recorded with the particle-image processing system
was performed. The schematic in Figure 4 shows the size and position of the particle-trackine
window in relation to the test section. Figures 5a,b show two consecutive flow fields, taken at A/i
= 0.53. for parameters identical to those in Figure 3. In this case, the dimensions of the test
,,ec.tion approximate -10 cm by 30 cm. over which a 32 by 24 point grid was imposed. The flow
field was averaged over 36 video frames (one second), collapsing the velocity, based on
approximately 5(X) particles to the grid points. Both the velocity field (indicaied by the arrows) and
the currespondinrg ,orticitv ishown as color contours) are shown. For reference., the color scale
for \'orticity (s 1) is presented. The images indicate the advection of a cyclonic vortex cell init the
test section during the 90 second time interv:al.

By investigating such images at differeni elevations, it was demonstrated that the current
hal a vertical shear with similar horizontal structure at various depths, but with vorlicity decreasing
with de2pth. Ad*justment of !he flowrate served to increase the overall strength of the current, and
decrease the number of vortex cells observed.



4.2. Nttrow nterctio
Ezxperimientation with file presence ol topography involved adioustmlent of' thle flowrate ats

%%ell its the posit ion of the obstacle relative to the centerline! of'thC annuIus.
F-iguire 6 is at parnic Ic-streak photograph showing the f'ormation of a cyclonic vortex in the

lee ofl thle obstacle (see arrow mt z/H = 0].53. The dashed line indicates thle base of, thle topography.
%%hiii the bright arlc Patterns Outline the reflection f'rom two Juxtaposed light sheets. Aliso sceen Is
the presence of a vortex cell. Flow is again I'rorn r'ight to left. In this case, thc topography rests at
at position y1-/D = -0.25. Owing to stratification efftects the f'low above the obstack, does not
generate at lee-side vortex. Due to thle Meandering nature of* the cur-rent. no prof'ound differenees
are Seen Withi ad *justmlent of the topography to other y-rfD Positions.

fligimage was also employed it) study thle ecirrent-topography interaction. Figures 7a,0 are
the %clocir v and vorticitv fields obtained tronm paitic fe-imlaging for the identical experiment as in
-i gore' (). 'rhe white circle outlines thle base oft the obstaclec. At this observation Ic ye I. the

topography interacts with the f'luid and thus,. thle velocity and vortic ity fields directly ahov'e thle
ce nter Portion of' the obstacle m1u.st be ignored. First. note the approach of a cyclonic voile x-celI
prior to its interaction with the obstacle. Also. two Structures inl thle lee of' thle topography% C11n
clearly be seen. This includes both at cvclonic vortex (white-cored ICfeture to the right. l'acing
downstream). and accompanying anticyclonic region (black-cored, to the left) f'ormed due to the
high localized value of' shear. Unlike Figure 7a, 7b ( 105 seconds later inl ltime) shows a f'lokk
structure dominated by the presencec of the large cyclonic vortex-cell. as it has ftilly impinged upon
the obstacle. Thle patterns depicted were observed to he approximately periodic, with the cyclonic
eddy. and accompanying anticyclonic region returning to their original strengths and positions. Inl
addition, similar qualitative results are seen at a level z/H = 0.7 (Just helow the peak of' the
obstacle), with the two structtires possessing at corresponding decrease in strength. Additional
experimentation is described in more detail by McGuinness ( 1994).

5. Conclusions

Using a surf'ace-driven source-sink technique. a Vertically sheared narr-1ow Current.
possu~sitng a Gaussian-like horizontal profile. is generated within anl annular f'acility and allowed to
interact with topography in the presence of' background rotation. Important parameters include the
Ros-sby. Eknian. and Burger numtlbers, noitmalized topographic lengths, arid normalized positions
oft thle obstacle within the annulus.

The present preliminary experiments focus oin stratified fluids with and without the
presence of topography. Particle-streak photographs outlined thle qualitative 110ok Structure1 Mithinl
a 1 20 test section, while particle-imlaging techniques provided more quantitative details of ilt:h
velocity and vornt.iciy fields within at smaller area. Both showe~d it horiZonta~ll and ver~tliclly%
sheared curr'lenlt possessing Cross-sticarn instabilities, combined With aZimu~thall) distribute11d
cyclonec vortex structures. These were quasi-steady, and] advected around theC facility annullu1S With
at speed 1/3 that of the current. Cases with topography Outlined a complex interaction between the
currentll and Obstacle. Speci fically, at cyclonic vortex and accompanying anticyclonic region were
generated in thie obstacle lee, decreasing in strength with increasing fluid elevation. Simiflai
qualitative res'ults ensued when the obstacle was repositioned within the annulus,

Scant laboratory. and only selected numerical, modeling has been performed inl thle area of
horizontally and vertically sheared Currents in the presence oft topography. Field obsorvations- have
shown i similar features in the vicinity of" Fieberl ing Gulyot. In two stuidies of' Fieberli rig. Ro~den
1 1L)9 1 . I19931 observed 'jet. like'' currents inl the vicin itN of't11e seamll)OInt Which possessed 110th

1106/41 .iIt and vertical shear. The lateral lengthscale of the features Showed alll to be 'liarro"
currentis.' I.e.. having a1 hori~iotial dimlenlSion on101-the-oder of thle chara'ýcteristic wvidtl 0t 11mC
topography. Furtherf. i aWeakl' mean Cuirrenrt with intermittent cvclonic and anticycloinic eddy fields
wcre ailso discomcred. These pr,.liminary experimental resulhts are in consonance with the field
observatilions. T!; :'0ogh the present work. til leaI iibi IitN' of' model inrg current-topography
Interaction has beenl Shown. 11Ilmployine the same soutrcc-sink approach. other current1-topographic
feat1irc interacion711S, suchI as coninfrental shelf bi'eaks iid Multiple obStaCclS, could lie sutuievd.
11urther, theC usC o1 reCcIIIl developedl paiticle-imigiong sof'twarec has also proved itself' iii
i ~ll ~liilS Ii ti ieaIi ng withi geol ii trv . rot at ion, and haC kgrOnmnd Strt ii~i tict n
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Experimental Study of Buoyant Jet Discharge

In a Rotating System

J.F. Atkinson and G. Lin

Department of Civil Engineering
State University of New York at Buffalo

Buffalo, New York 14260 (USA)

Abstract

An experimental study is described in which a buoyant jet is discharged at the surface of a rotating
tank of water, This setup is meant to simulate the discharge of rivers or estuaries into large lakes or coastal
areas. The present experiments are performed with initial discharge densimetric Froude number greater
than one, so that a "surface-to-bottom" discharge is obtained. The width of the discharge is also smaller
than the Rosaby radius, so that flow extends across the entire width of the opening. The overall objective
of this research is to develop a model to predict the behavior of these flows as functions of rotation rate,
bottom friction, and discharge buoyancy, momentum and aspect ratio. These results are to be used along
with numerical studies so that other effects might be incorporated such as ambient cross-flow or wind
stress. The present results concern the importance of rotation on the plume trajectory in the near-field
region where there is still bottom attachment. Experiments are performed for discharge without a bottom
(i.e., discharge on a step) and with a bottom of constant slope. The experimental results are consistent with
a scaling analysis which shows the relative importance of the Coriolis term in the momentum equations for
this region, depending on discharge and bottom conditions.

Introduction

The marginal band in which land and sea (including large lakes) meet represents an important and
complicated system. Human activities tend to be concentrated in such areas, which support intense
economic development, particularly where large rivers empty into seas (see, for example, discussion by
Land-Margin Ecosystems Research Coordinating Committee, 1992). These regions are typically rich in
nutrients, though contaminants may also be transported from inland, having various adverse effects. The
fate of these nutrients and contaminants, as well as sediments, depends on the interacting factors which
determine the trajectory and mixing of the discharged water. The basic physical behavior of these systems,
particularly the interaction between rivers or estuaries and the seas into which they discharge, provides a
number of interesting fluid mechanics problems, but it is also interesting because of its implications for
waste management and future economic development. The present work is aimed at developing a greater
understanding of these important flows.

When fresh water from rivers or less salty water from estuaries enters the sea an interface forms
due to the density difference between the flowing and receiving waters. This effect is also associated with
thermal discharges from power plants into colder lake or coastal waters. Buoyant discharges have been
extensively studied, being important for a number of applications in both natural and engineered systems.



These discharges often dominate local physical and biological processes. The near-field processes also
have implications for the venical structure of the ocean interior (Garrett et al., 1993) or for the general
circulation on a shelf (Chapman and Lentz, 1994). Studies of these discharges must consider a broad range
of spatial scales, from about 100 - 103 km. For the present study, interest is primarily for flows which
have a characteristic length scale large enough that effects of the earth's rotation are significant. In addition
to rotation, these flows are influenced by buoyancy, initial momentum, entrainment and frictional stresses.

Due to their importance in environmental hydraulics, buoyant jets discharged near the water
surface have been examined in a large number of studies in the engineering literature. Physical modeling of
smaller-scale flows (i.e., without rotation) has been successful in developing predictions of entrainment and
subsequent dilution (Jirka, 1982). Many of the earlier studies in this area are reviewed by Jirka (1982) and
Chu and Jirka (1986). Experimental studies of large-scale buoyant discharges are less common, though
several important dynamical features have been demonstrated. These include the formation of an
anticyclonic turning region near the source and the subsequent formation of a right-bounded (northern
hemisphere) coastal current (McClimans, 1986; Atkinson and Masse, 1990). Although the estimation of
initial entrainment and mixing is thought to be fairly well understood, it should be noted that most of these
studies have considered discharges over a sharp drop-off. A significant difference between this situation
and the conditions of a coastal jet is that entrainment may occur immediately from underneath in the former
case, while for the latter case bottom attachment initially prevents vertical entrainment. Atkinson (1993)
reviewed the problem of estimating the position of the point of detachment from the bottom and developed a
model to calculate this position based on a numerical integration of the longitudinal momentum equation.
However, like the experiments used to generate data for model comparison, the model did not consider
rotation and it is unclear how this might affect the calculations for the separation point.

A number of field studies have been performed to document buoyant plumes and their frontal and
mixing characteristics (e.g., Garvine, 1974; Wright and Coleman, 1977; Luketina and lmbergcr, 1987:
Boicourt, 1973; Masse and Murthy, 1990). However, only a few experimental studies have been
performed for rotating buoyant discharges, One example is the study by Whitehead (1987), who carried
out experiments to examine steady, barotropic, inviscid flow through a rectangular opening in a rotating
frame, with the intent of simulating flows through straights in the oceans. He showed that it was not
necessary for the channel width, W, to be greater than the Rossby radius, ri = (g'h)l/ 2/f, in order for
rotation effects to be seen within the channel. In this definition g' - gAp/po is reduced gravity, where Ap is
the density difference between the buoyant discharge and the receiving water, po is the jet density, g is
gravitational acceleration, h is discharge depth and f is the Coriolis parameter. Other researchers have used
the Kelvin number, K = W/ri to determine when rotation should be important (e.g., Masse and Murthy.
1990). For K >> I, the channel flow will tend to concentrate along the left-hand (viewed facing upstream)
bank and a reverse flow (upstream) may even occur on the right bank. Unfortunately, the physical
dimensions of these flows usually preclude the gathering of very detailed synoptic data sets. Physical
modeling experiments, where various features can be controlled, can add significantly to our knowledge of
these flows.

Experimental Apparatus and Procedures

The apparatus, sketched in Figure 1, consists of a rectangular tank, approximately 2 m x 3 m in
surface area, installed within a rotating room capable of speeds up to 6 revolutions per minute, The inlet is
a rectangular channel with adjustable width, up to 30 cm. A broad overflow weir installed at the opposite
end is used to maintain constant depth during an experiment. The tank has clear side walls for viewing.
Experiments may be done either with or without an adjustable-slope bottom in place Salinity is used to

2



provide the required buoyancy. Because of plumbing problems associated with the rotation of the room,
the apparatus is designed to hold all the water, both inflow and discharge, needed for a given test. The test
section (the uppermost of three compartments) has a depth of 25 cm and has clear plexiglass sides for
viewing. The rotating room is supported by a single thrust bearing with a 100-ton capacity. It has been
checked with surveying instruments to insure rotation is in the horizontal plane only, and tests have shown
that the rotation is nearly perfectly smooth (i.e., a water surface remains smooth while being rotated).

An experiment is performed by filling the test section with water of desired salinity and, for
rotating tests, "spinning up" the tank for a period of about an hour to establish a steady rotating system.
Fresh water is then pumped at a given flow rate from the lower compartment up through a "stilling" box
and onto the inlet channel, from which it discharges into the test section. A separate tank holds additional
salt water which can be pumped into the test section through a diffuser plate during the course of an
experiment to make up water entrained into the jet. The water which passes over the downstream weir falls
into the middle compartment of the apparatus and can either be stored for disposal after the experiment or
recycled through the lower compartment to allow longer test runs. One potential disadvantage of this latter
procedure is that the inflow salinity does not remain perfectly constant. However, tests performed so far
have shown that the change in density of the jet water is negligible over a typical test run. The discharge of
water over the downstream weir creates a small net flow (and possible associated circulation) in the test
section, but experience has indicated that this effect is negligible.

The primary goal of the present set of experiments was to document the overall trajectory of the
discharge under different bottom conditions and rotation rates. Flow visualization was used as the primary
instrumentation. The bottom of the test section was marked with a 10 cm square grid. Dye is added to the
inflowing water and an overhead video camera records the basic motions. Test conditions for the present
experiments are summarized in Table 1. This series of tests evaluates flow trajectories for three different
bottom conditions, with and without buoyancy and with and without rotation. The three bottom conditions
were (1) discharge on a step; (2) shallow water, or flat discharge (depth of receiving water was equal to
depth of discharge); and (3) discharge on a shelf with constant slope, S = 10%. For all cases reported here
the inflow discharge rate and geometry were kept constant at 1.0 V/s, and 20.0 cm wide by 1.5 cm deep,
respectively. This gives a discharge velocity, Uo = 33.3 cm/sec.

For the stratified tests, Tests 4 and 13, the Rossby radius is calculated as ri = 6.5 cm and 10.3 cm,
respectively, resulting in values for the Kelvin number, K, around 2 - 3. This implies that rotation effects
are probably present in the discharge channel, although observations indicated that there was still
approximately uniform flow across the mouth of the discharge. In addition, the depth of flow was only 1.5
cm, so that detection of a possible lateral tilting of the water surface is difficult. The parameters for the
present tests were chosen to evaluate the general behavior of the discharge after entering the test section,
but future tests will have to be conducted with smaller K. Tests with rotation were conducted until there
was an apparent effect of the side walls on the observed flow patterns and a return flow was generated
along the upstream wall. Tests without rotation could be run for longer periods without a significant side-
wall effect. In either case, however, it is not possible to simulate far-field conditions with this setup.
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Figure 1. Experimental apparatus.

Run Conditions Observations
Test No. Bottom o(sacci) g (cn/sec2) LI L) je R (cm)

2 step 0.262 0.0 100 30 55
3 step 0.262 0.0 150 35 55
4 step 0.262 7.75 145 20 115
5 flat 0.0 0.0 ...... -

6 flat 0.262 0.0 180, 30 130
7 flat 0.419 0.0 140 10 90
S slope 0.0 0.0 --- .... --
9 slope 0.262 0.0 220 * 25 115
10 slope 0.0 0.0 .- -.. -
II slope 0.262 0,0 250 * 25 135
12 slope 0.0 19.6 -.......

13 slope 0.262 19.6 110 30 70
notes: m = rotation rate = f/2: * values outside range of camera, but are at least 200 cm

Table 1. Test data and observations.
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Results and Analysis

The last three columns in Table I list observed lengths describing the geometry of the discharge
flow trajectory, as shown in Figure 2. Here, LI is the maximum horizontal distance from the discharge
wall reached by the plume, L2 is the distance reached before the plume starts to turn and R is the radius of
curvature of the turning plume. Of course, these values are developed from observations on videotapes and
are therefore subject to a certain degree of uncertainty, estimated at ± 5 - 10 cm. However, there are some
trends which are indicated. For example, a comparison of Tests 6 and 7 shows the expected result that the
discharge turns on a tighter curve (i.e., smaller R) when a is larger, with all other conditions the same.

It is also interesting to compare Tests 2 (or 3) and 6, which concern a neutral discharge on either a
step or into a shallow receiving water (flat bottom). In both cases the plume starts turning at about the
same location, but the discharge on a step is not able to penetrate into the receiving water as much as the
shallow water flow, and turns more sharply. This loss of forward motion is apparently due to entrainment
and vertical spreading, the shallow water discharge maintains stronger momentum into the receiving water.
This effect can also be seen by looking at Test 9 or 11, which considered similar conditions, except with a
sloping shelf in place. The initial turning point is again about the same, but the curvature was intermediate
between the values for the step and shallow water discharges. This result is to be expected, since the
limitation on vertical spreading and entrainment is less than for the flat bottom, but greater than for the step
discharge. The plume in this case was observed to maintain contact with the shelf until it reached the
bottom of the tank (the shelf slope was less than the observed vertical slope of the spreading step
discharge). Bottom friction will also affect the plume and slow its forward progress, but this effect is not
as strong as entrainment. Future studies should examine this process more closely.

The effect of density stratification is seen by comparing Tests 4 and 2 (or 3) and Tests 13 and 9 (or
I1). Buoyancy works in much the same way as the shallow bottom or slope, in terms of limiting vertical
spreading. In Test 4, which considers a salinity difference of less than 1% (by weight), the flow
characteristics were very similar to the discharge in Test 6, though the turning was slightly sharper and the
maximum penetration into the tank was somewhat less. This is to be expected because entrainment is
reduced, but not as much as with the solid bottom. A similar result is see in Test 13, which had a salinity
difterence more than twice the difference in Test 4 (see Table I). In this case the plume started turning at
about the same location and had about the same R, but L1 was larger. This is believed to be related to the
additional reducLion in vertical entrainment associated with the stronger stratification, and is also consistent
with a larger calculated value for Rossby radius (see below), but further tests are needed to quantify this
effect.

One additional length scale of interest is the distance over which the jet remains attached to the
bottom, for tests with a sloping bottom, or the distance at which the jet reaches the bottom, for tests with a
step discharge. This point was easier to identify with step discharges because the sloping shelf did not
interfere with observation. For Tests 2 and 3 the flow extended throughout the depth within about I m
offshore. With the shelf in place it was easier to observe the separation point in tests without rotation. For
example, in Test 12 the separation point was observed approximately 80 cm offshore. In Test 13,
however, it was not possible to identify the exact location of this point, due to the turning of the plume,
although it was in the same region. An initial approach for analyzing this problem may be obtained from
Atkinson (1993), who developed a model based on a numerical integration of the longitudinal momentum
equation in order to determine the point of bottom detachment for a buoyeat discharge on a slope.
However, that analysis did not consider possible effects of rotation. It is not clear, for instance, whether
total depth or total distance along the trajectory is more important in controlling bottom separation (note



that depth is less along an equal distance in rotating cases, due to the curvature of the jet trajectory), and
on-going tests arc being conducted to evaluate this question.

L1

'-2

discharge

Figure 2. Definition sketch for length variables describing plume geometry.

In addition to observations of the bottom separation point, tests without rotation provide a
comparison of observations of the front produced when the fresh water flow was started. For all cases the
front was observed to spread radially (or laterally) more quickly in tests without rotation. With rotation
this spreading was reduced and a typical "mushroom" head would appear. Vortices generated at the sides
of the advancing front tended not to drift significantly from the main trajectory of the jet and became
engulfed into the head, while lateral spreading of the front was much stronger without rotation. This
restriction of horizontal spreading is consistent with other studies in rotating systems (see, for example,
Helfrich and Battisti, 1991) and is a feature that must be recognized in developing models of large-scale
buoyant discharges.

In order to evaluate the trajectory of a buoyant discharge on a slope a number of variables may be
defined. The variables which determine basic flow characteristics include discharge velocity Uo and depth
ho, g', f. W and ri In general, ambient cross-flow velocity should also be considered (e.g., Chu and Jirka,
1986), but the present experimental apparatus cannot simulate this feature and it is assumed zero for this
discussion. There are several important dimensionless parameters which may be formed from the above
variables. As previously mentioned, the Kelvin number indicates the extent of rotational effects expected
within the channel itself, before discharge. The densimetric Froude number, Fro = Uo/(g'ho)1/2, controls
the extent of bottom attachment. Classic arrested wedge analysis (e.g., Turner, 1973) shows that Fro > I is
a necessary condition for bottom attachment at the discharge point (i.e., a "surface-to-bottom" discharge).
In fact, experiments on jets in non-rotating systems have shown that Fro must be greater than about 2.5 for
there to be bottom attachment on the slope (Safaie, 1979). Values for Fro were 9.8 (Test 4) and 6.1 (Tests
12 and 13). Reynolds number, Re = UoL/v, where L is a horizontal length scale and v is kinematic
viscosity, may be important to describe turbulent mixing effects, but according to McClimans and Saegrov
(1982) the actual value is not critical as long as it is well above 500. The only imposed horizontal length
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scale is the width, W, though ri is also important for rotating tests. Values for Re are all well above 500
for the tests reported here. The Rossby number, Ro ;F Uo/fL, indicates the relative importance of rotation
in the equations of motion. Using L = W, values for Ro were 3.2 for all rotating tests except Test 7, which
had Ro = 2.0. These values are of order 0(l), signifying that rotation should be important, as indeed the
observations support.

A far-field flow may be defined after the point at which the discharge starts to show significant
curvature (L2 in Fig. 2). If a geostrophic balance is in place then it can be shown that Fr2 ft Ro (Fr is the
local value for Froude number) and since Fr should be approximately of order O(1) (Atkinson et al., 1994),
thmn the far-field may be defined as starting at the point where tht, local value of Ro approaches I. The
leIgth scale in the definition for Ro then becomes equal to the Rossby radius, ri. In other words, the plume
would be expected to turn over a distance ri. This interpretation is consistent with previous discussions of
ri (Garvine, 1987). Atkinson et al. (1994) also showed that this conclusion was consistent with
observations of the Niagara River plume in Lake Ontario. Alternatively, if a geostrophic balance is not in
place then other factors must be taken into consideration. For example, the present observations indicate
that L2 is about three times greater than ri, based on initial discharge depth and relative buoyancy, and also
that the plume turns before it separates from the bottom. Therefore, bottom friction should still be
important and the above analysis will not be valid.

Conclusions

Experin,,its have been performed to study buoyant discharges in a rotating system. The data set is
still limited to a relatively small number of tests, but the general behavior of the flow in response to changes
in rotation, bottom conditions and buoyancy has been outlined. On-going experiments are using more
detailed instrumentation to ealuate specific questions, such as the effect of rotation on the bottom
separation point on a slope, and the effect of larger Kelvin numbers on the characteristics of the discharge
itcelf. Some preliminary scaling arguments have been presented which appear to describe the general
behavior, but these need to be refined as more data become available.
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DEVELOPMENT OF BOUNDARY LAYERS
AND TRANSPORT PROCESSES EFFECTED BY BUOY,\NCY

E.I.Nikiforovich, N.F.Yurchenko

Institute of Rydromechauics, Ukrainian Academy of Sciences
ul. Zheliabova,8/4,252057 Kiev, UKRAINE

The model of a stratified fluid was shown [ Nikiforovich, Maderich ] to have the proper
bpatio-tempural scales depending on the extent of its thermodynamical uonequilibrium. Theu
iii the franin of this coiccLAt the model of a homogeneous fluid is a singularly degenerated one.

Physically it means that bulk vorticity sources appear in a fluid due to available thermo-
dynarnic nonequilibriuni (that is due to stratification), their intensity having been proportional
to the value of thin nonequilibriuni. In a general case nonlinear interaction between vorticity
sources of thermodynamical and fluid dynaamical nature (the second one corresponding to the
homogeneous fluid flow) defines a flow field in a stratified fluid. Stratification degeneration
results in the degeneration of the bulk vorticity sources which should qualitatively change the
Hlow field pattern.

The typical case of the above mentioned interaction represents the development of a.
temperature stratified boundary layer (SBL) over a flat plate. This problem investigation must
give the most clear insight into the mechanisms controlling the behaviour of flows with various
types of vorticity.

There are two aspects of the problem which were studied practically independent from
each other. The first one deals with the buoyancy effect on the 2D boundary layer struc-
ture and heat transfer. The second one concerns the boundary layer stability, transition
to 3D motion, its structure and heat transfer peculiarities. Experimentaly 3D motion of
the longitudinal vortical type was found to be certainly preferable in boundary layers over
heated surfaces; space scales of this structure and its downstream observed positions were es-
timated but niot determined through the basic flow parameters. Numerous theoretical works
rG.Wichern.1991;W.Schneider,1979] represent attempts to find a solution of boundary layer
equations in a form of expansions of a parameter discounting buoyancy using numerical meth-
ods and the idea of local self-similarity or nousimilarity. However the solutions were found only
for a narrow range of the expansion pararneter values. Besides, the expansion convergence is
not evident.

Thus the purpose of this work is as follows:
(i) to cunstruct SBL equations, to analyze the nonlinear interaction of bulk and surface

vorticity sources;
(ii) to st udy physical mechanisms of 3D vortex structures development in SBL;
(iii) to analyze spatio-temporal characteristics of vortical structures arising due to buoy-

ancy; to verify the developed approach using the comparison of theoretical estinates and ex-
perimental results.

PROBLEM FORMULATION
ollo g. lieou s, viscous and heat conducting flow with velocity Uo and temperature Tu over

i horisouatal (for simplicity) flat plate with temperature T', is considered (fig. 1). Viscosity L



and heat conductivity coefficients are supposed to be constant. Navier-Stokes, continuity and
lealt couductist, equations in a coordinate system related to the plate have a form of

Y •,, ' -" t~u l P

+ + U-"VU =I O + aui+ F., (2)

Tt+ U-Vv PO37 + waV + Fy, (3)

OU OV Ow
S+ + = 0 , (4 )

OT
T-- + uT = Pr-AT(5)

li 'ure 1. Scheinstic vlew of the boundary iayer etrue.
2ure of the londitudina- vertical type wilth conrespond.
ing velocity distributions and shown apece scales.

here P -= ;= J, F•,-'} is a gravity force, CV u9 + v + w ' is a convective operator,
A5 = r + L-3 a Laplasian operator, Pr is the Prandtl number, Y5 = g5, g - gravity
acceleration.

The most important role i the stratified fluid dynauics belongs to a form of the state
equation which just defines the stratification. Here density is accepted to be linearly dependent
on temperature

P = po(l - (T- To)], (6)

S= -- (-)• being the coefficient of volumetric thermal expansion. The form of the state
equation (6) natura'ly defines the nondilnensional parameter e = #(T, -TO) which characterizes
the degree of fluid thermodyuamic nonequilibriuni (for definitness T, > TO). It is evident that
the case of e = 0 corresponds to the homogeneous fluid, for ordinary fluids and conditions
SI. The gi ,,, ay force has a form of 0 - I - cU))g = JO; -(I - e0)9; 0}, here 0 = T- If
the dynatiuc prl.sure is introduced

Pd = P- O (7)

then the buoyaicy force takes a form of

and It. follows luli the eqs. (1) - (3) that in a general case the buoyancy force (8) defines
the bulk vorticit y source with the intensity proportional to the degree of fluid thermodynamic
nonequilibriun Now in addition the gravity acceleration g should be included in a set of defin-
ing parameters I n its turn it results in nonequihbrium space scales of f,(•)(w 2/g)'/ 3 , f2(O)u•/g
and f3 (e)u'/gv lype, f, being certain functions of parameter e degenerating at e - 0 Ju.t
available noneqifibrium scales define the main difference between boundary layers in hoinoge-
neous and strauiied fluid.



ON THE SE;LF-SIMILARITY OF SBL
As meutioned above, the limiting cuse of e = 0 corresponds to the flat plate boundary

layer developing in a homogeneous fluid flow which is described by Prandtl equations. The
.ifluence of buoyancy ,ay seem to be taken into account by introduciiig disturbances ;into
solutions of Prandtl equations which are proportional to i parameter. This approach was
realized in [G.Wickeru,1991;W.Schneider,197ý]. However the situation appears to be much
more complicated. Solutions of Prandtl equations are known to be self-similar. It resul',s
froin the only space scale equal to u,/Uo • Thermodynamic uonequilibr'num ( e 9 0) resluits in
the occurence of space scales explicitly dependent on e . Hence bourdary layer seff-sixindarity
should not take place in a goijeral case, i.e. the d&.generation of SBL equations is singular
ýNikiforovich,1993]. Thus deriving SBL equations, one can naturally suppose that the velocity
field depends on the small parameter 6 and that there exist nonequilibrium space scales diflerent
mi streainwisc and spanwise directions.

Asymptotic analysis of 2-D Navier-Stokes equations results in two basic conclusions:
(i) boundary layer approximation always requires the conaideration of bouyancy;
(ii) stratification degeneration law for the exisitaucc of' Blasius flow should have a form:

c.R/2 --. 0 as e - 0 and Re - co.

THREE-DIMENSIONAL VORTEX STRUCTUREa IN SBL
Vorticity generetiou in a fluid body is a consequence of the potential energy t,:•-usition into

the kinetic uoe. This transition may acquire various forms of vortical mnotion. The widespread
form of the vortical motion in boundary layers with body forces is the 3D motion of the
longitudinal vortices kind. The experimental evidence of such flow structure development re-
sults from typical velocity distributions in boundary layers over heated surfaces displaying
periodic velocity vari-
ations along a span-
wise axis [e.g., see . "
Akiyama et al, Gilpin - ,,,-c (Re,

et al ]. In addition, 'o

heat transfer measure- ' 7 .':... .5 "'"_._...__,_._____
mnents along a heated J v
horisontal bottom, of . . .

anl air Lube' !Yurclieu- 0 -. A -

ku, Pedmahitus] show-
ed a gunifican, growth
of heat transfer fac-
tors beginning from £ s a 4j *

the downstream posi-
tions where fhe devel-

Figure Heat :r..,nofer (a,.t,¶ra tot a horidontal flat plate heasad from oulo% and maaim'Am flue.
opmnent of longitudi- tuating velocitte along l' . boundary Iayer thickniov depend.ng on thi length Reyr'lds number
Ilatl Vorticesl W ~s cob- 1, ]• respectivelY (Rc) and u/U(R, J) for the natut.. transition devJopment; 2 • (Re) ICE the

o wi'p.d boundary laytr, -respdctivly 6/U(Re) .•rd (R.) It;< Ac .aja of antiatlo longitudina.l
served (curve 1, fig.2). :,rtice,

This process is in a good igreemnent wit', the growing intensity of vwlocity fluctuationj (curve
J). The initiation of the development ol longitudinal vortces with a certain sppce scale ,esulta
in the augmuentation of heat tr-lefer eiar the heated wall (curve 5) even coimpared to the
artificially turbulized bouudary lajer (ctuve 2).



Thus the understanding of mechanisms and prediction of spadio-teniporal properties of 3D
vortical structure in boundaky layers depending oil the defining flow parameters is important
both in basic, and applied aspects. The most general approach and insight into the problem is
provided by the dev'elopinent of theoretical analysis of SBL.

SPATIO-TEMPORAL PROPERTIES OF 3D SBL
As was mentioned above, 3D vortical structures in SBL arise due to buoyancy forces.

'lherefure it. van be supposed that their spat io-temuporal clharacteristics and the equation so-
lution depend explicitly ou the sniall paramueter c . In other words, it is supposed that the
solution in the domain of a 3D boandary layer has a form of

U.. = U/U= U , ,, Y, z') -- )

V. V/Vo- elVjct, z,' , *) + (]0)

W. =V/Wo = fPW..(t,* ,. + "1

0o ,t* , ,)+ + , (12)

o = P"Po, . = + .. (13)

here U;, V,)*, VV'V, p&, Oo by the definition are the values of a unit order and uioidimeisioilm
va.ridb!kb are given hy

" X/lo.", .* = 1-'V/Loy, z' = C- = =/t0" t* WO(1O.)

/0.,, /0o, lo,, V0, Wo are constant in value with dimensions corresponding to length and velocity
idheii magnitudes will be deteriaiined below); index of e power is an arbitrary value which
sbould be found. Sulbtituti,|g (9) - (12) expansions into the equation system (1) - (5) and
taking the limit of c U one can get

=-2/3,=-1/3, = 1/3, p 1/3.1 -1/3, k -2/3., =2/3 5/

Vo = Wo - •,,) 1 , /o_ = Ub(,12)1t3, (ly = = to , /g)l1 (16)

The set of c power ihdex anuu the certain scales of Va, Wo, lox, 10y, 10, provide a simultaueous
-,ccouut o. iaertiouz, viscous and buoyc.ucy forces i. the equations of 3D SBL.

The equation system for the nonatationary 3D SBL at tiGe zero approximation in f takes
a torin of

•+ -+ -- 0. (17)
6.r ' d K

a0 , )": C, . z' ";

O +- L.t.7oVW = du04 00• +(9at o 7 V .• _ (20)

19t 'ii7ti 0 z

7 0 WO -F)?- L-i- /* 3' (20)



lhre 17u = {U 0 , Vo, W0} and astericks are omitted for convinience at. nondimensional values.

The phiis Sign inI the bouyancy force corresponds to the heated surface case and the inillus

corresponds to the cooled wall.

Taking into account (14) - (16), spatio-temporal scales of 3D SBL take a form of

{L.. = r--l"/(v/g`)11tUo; Ljo = L, = Lo = '"(v•/y)'
1 i 7T = e- 1 (J/g)'1 : }. (22)

So far as these scales appear due to buoyancy forces responsible for the bulk vorticity

sources, the obtained scales can be easily interpreted physically - L, 0 , L•c, L, 0 represent. char-

act-eristic space scales along the downstream, spanwise and normal axes of considered vortical

structures. It means that fluid-thermodynamical structure of 3D SBL is developing as a result

of the nonilihcar interaction of viscous and bulk vorticity sources. It follows from (22) that

these developed vortical structures are elongated downstream, the ratio between their lateral

and longitudinal scales having an order of e/1 Estimation of corresponding velocities in SBL

gives Lio ~ O00), Vo ~ W4o ~ e: (23)

Corrections to the zero approximation in c to the 3D SBL solutions can be shown to be of the
order of e113 for velocities, of e_/3 for pressure, and of e2I3 for temperature.

To get more clear physical understanding of obtained scales, experimental results should
be considered dealt with the development of 3D boundary layer structure over a heated surface.

Physically L0 scale accurate to the function of the Prandtl number corresponds to a

minimum vortex scale arising due to the buoyancy. That is the longitudinal vortex wave
number ý, and Lo scale must be related by a universal dependence of the kind of

A, = f'0 (Pr)L - - '-I)/ /I/, (24)

here f 0 (Pr) is a universal function dependent only on the Pratkdtl number. Experimental results

are in a good agreement with this relationship.

Using the expression for the lateral L 0 scale, one can get the downstream distance LO

of existing 21) SBL. The 2D SBL thickness 62 grows along L-2 according to 62 = L2Re7,312 It

was shown that this thickness can not exceed L 0 scale. Hence its streamwise extent (or the

dlownstrclAN i 1JUS1t1)i where :3D vortices appcar) can be estimated depending on the basic flow
L, f2 (Pr)LoReL" Uo '3-(1' )--/:% U-o#-.'T - (25)

here f (Pr) is the universal function of the Prandtl number values of which can be obtained

cx perhaentally.

CONCLUSIONS

Nuonpotential body forces in a boundary layer result in the development of tile flow

structure space scales characterizing tile intensity of bulk vorticity sources. In a general case
the interaction of bulk and surface vorticities does not perimit a self-similar solution for a 2D

boundary layer and essentially effects the tlow strucure.

Two types of space-time scales for vortical structures ii boundary layers effected by

buoyancy were established using the asymptotic analysis of 3D nonstationary equations.

Theoretical estimates were found out to be in a good agreement with experimental results

related to the boundasy layer structure developing in a boundary layer over a flat heated surface.

- Applied anspect of this investigation w demonstrated concerning experimentally obtained

.rtwth of hviia transfer in a boundary layer with embedded longitudinal vortices.
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THE COUPLING OF INTERFACIAL WAVES AND TURBULENT
CONVECTION IN AN ANNULUS
Andrew P. Stamp and Ross W. Griffiths

Research School of Earth Sciences, Australian National University,
Canberra, A.C.T. 0200, Australia

Abstract

When layers of salt and sugar solution are separated by a diffusive interface, in-
terfacial waves are spontaneously generated by the turbulent convection once the
system evolves to a critical value of the density-anomaly ratio R, =_ AS/oAT
(Stamp et al., 1994). The waves modulate the interfacial fluxes by modifying the
interface thickness and thereby organize the otherwise random convective motions
into coherent large-scale circulations. In long rectangular channels a wide range
of conditions gives rise to a single wave which propagates back-and-forth, resulting
in quasi-periodic reversals of tank-scale circulations. Here it is shown that in an
annulus this same coupling phenomenon gives rise to turbulent convection cells of a
travelling-wave nature, coupled to large-amplitude solitary waves on the interface.

1 Introduction

Double-diffusive convection occurs when a fluid contains two or more components which
diffuse at different rates and make opposing contributions to the vertical density gradient.
When the faster diffusing component is unstably stratified, a thin 'diffusive' density inter-
face forms and the diffusive buoyancy flux through this interface drives convection in the
adjacent layers (Turner, 1965). Subsequent studies have focused on the interfacial fluxes
so as to understand mixing in geophysical and industrial settings (Turner 1974; 1985).

An intriguing property of the two-layer convecting system is a systematic interfacial
wavemotion coupled to large-scale convection in the layers first observed by Turner &
Chen (1974) when a diffusive interface was formed by placing salt solution above sugar
solution. Although Linden & Shirtcliffe (1978) noted that the presence of waves could
increase the fluxes through a diffusive interface, little further attention has been given to
the generation of these long-lived waves and they have gone unexplained until recently.
Stamp et al. (1994) studied the coupling of waves and convection in this double-diffusive
system as an example of the organization of coherent motions in turbulent flows, and as a
possible analog to the coupling across the air-sea interface of fluctuations in atmospheric
circulation with long waves on the equatorial ocean thermocline.

Stamp ct al. found that the convection spontaneously generates large-amplitude waves
on the interface. The waves correspond to a local thickening of the interface and produce
horizontal variations in the interfacial buoyancy flux, which in turn force circulations on
the scale of the distance between waves. For a wide range of conditions a single wave
propagates hack-and-forth along the channel, organizing the convection into two cells
which oscillate in length from zero to the full length of the channel. This oscillation
begins when the interface is thick enough to support waves of sufficient amplitude and
speed to match the convective velocities, and continues until the property gradients have
run down to a point where the interfacial fluxes and convective velocities are too small to
match interfacial wavespeeds.

Here we report experiments which show that coupling occurs in a narrow annulur
gap. In this case. a small number of equally-spaced waves propagated in a cont.imiiioiis



circular path, with each wave organizing the surrounding convection in each layer into
two large-scale travelling cells. As a rule, all waves (and convection cells) propagated in
the same direction. However, occasionally one wave propagated in the opposite direction,
and during the ensuing head-on collisions the entire leftward and rightward travelling flow
patterns passed though each other unchanged.

2 Rectangular channels

The experiments in narrow channels carried out by Stamp et al. were set up with an aque-
ous salt-sugar interface separating two layers of depth H = 11.5 cm. Three independent
dimensionless parameters govern the flow: the density-anomaly ratio (R, =/_AS/crAT),
the total fractional density difference across the interface (Ap/po =_ OAS - aAT), and
the channel aspect ratio (L/H). Here L is the channel length, AT and AS are the con-
centration differences of salt and sugar across the interface, a and f3 are the expansion
coefficients appropriate for the linearized equation of state

P = P00l + oT + OS),

and po is a reference density.
At the start of each experiment the interfacial fluxes and resulting convective veloc-

ities were large because the interface was thin. However, as salt moved from the upper
to the lower layer and sugar moved from the lower to the upper layer, the concentra-
tion differences across the interface decreased, both R, and Ap increased, and the fluxes
decreased. As a result, the convection became weaker and the interface thickened by
diffusion. This evolution began with the convective motions becoming progressively more
two-dimensional and organizing the interface into thick and thin regions. The thick re-
gions propagated as mode 2 (varicose) solitary waves hut were too small and slow to
couple with the vigorous convection. However, as the interface thickened, the waves be-
came larger and faster, while the buoyancy flux and convective velocities decreased, Once
the system evolved to a critical value of the density-anomaly ratio, which increased with
channel length, the vavespeeds and horizontal convective velocities became comparable,
strong coupling ensued, and a single thick region of interface developed. This region
propagated back-and-forth ai,,.ýg the channel as a solitary wave followed by a region of
thickened interface which was acted upon by gravity and the stress exerted by the con-
vection. The resulting horizontal differences in buoyancy flux organized the convection
into large-scale circulations which reversed direction quasi-periodically (figure 1).

The waves persisted for about 4 hours and travelled 20 m. In contrast, solitary waves
propagating along a density interface between two deep motionless layers of constant den-
sity persist only for about 2 minutes and travel 3 in (Stamp & Jacka, 1994). hlence the
waves propagating along the diffusive interface gained energy from the organized convec-
tion. Whilst the qualitative behaviour of the flow remained unchanged during run-down,
the average thickness of the interface increased and the buoyancy flux, convective veloc-
ities and wavespeed decreased. However, the wavespeed did not decrease monotonically.
Instead the nonlinear coupling gave rise to large deviations from average values (figure 2).

The wavespeed was largest when the interfacial density difference (Ap/po) was large
and the interface close to static stability (?,, - 1), that is, when the fluxes were largest
(figure 3a). Stamp et al. argued that. the horizontal convective velocities are given by

2(BL), (2)
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Figure 1: Waves in a narrow channel consist of a long thin tail following a short thick nose. Most
of the unstable fluid is produced in the boundary layers along the thin interface ahead of the
wave. However, the organized convection swept much of this fluid to near the nose. (a) As the
wave approached an endwall, the size and strength of the cells along the wave increased at the
expense of the cells ahead of the wave, and this accelerated the wave. (b) After collision with the
endwall, the nose propagated back through the tail against the convective motion. Convection
from the interface near the nose then broke the single cell in two, and the cycle repeated with
the interfacial fluid trapped against the endwall collapsing under gravity.
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Figure 2: Time taken by the wave to travel the length of a 15 cm channel vs. time since
the start of the experiment. The decrease in convective activity due to run-down produced a
slow decrease in wavespeed, while the nonlinear coupling produced large fluctuations between
successive transits.
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Figure 3: Wavespeeds for experiments in a 15 x 5 cm channel, (a) c vs. R•, Larger initial
wavespeeds correspond to larger starting values of Ap/po. (h) c/u is. R,. The normalized
wavespeed increases with R, because the nature of coupling depends on the structure of the
interface.

where B is the interfacial buoyancy flux (units mn2 s-'). Using the measured buoyancy
fluxes the normalized wavespeeds, c/u, collapse onto a single curve (figure 3b)

where the additional dependence on R, suggests that thle exact. nature of the coupling
depends on the structure of the interface.

3 Annular geometry

Further experiments have been carried out in an acrylic annullis with an inner diameter
of 25 cm and outer diameter of 35 cm. Each experiment was started by placing the upper
(salt.) layer in the annular gap and then feeding in the denser lower (sugar) layer through
inlets at the base of the tank. For flow visualization a 50 Watt fluorescent lamp was placed
on the axis of the annulus and tracing paper attached to the innec mnd outer sidewalls.

After about an hour a stable configuration of three or four large thick regions of
interface formed. These regions consisted of a long thin tail attached to a short thick
nose, and all propagated in a wavelike manner around the annulus in the same direcl.ion.
The convection in each layer surrounding each wave was organized niai.o two large-scale
counter-rotating cells (figure 4). In this manner, the interfacial waves and convection
cells travelled in a continuous circular path without reflection. At first the waves were
equally-spaced, but with time the waves of larger amplitude caught up with those of
lesser amplitude. During the ensuing overtaking collisions the waves merged and the
number of convection cells decreased. As a rule, the aiunber of waves decreased to two
about 30 minutes after waves first appeared. In the rare cases when the system evolved to
support a single wave (with two convection cells ill each layer), its tail and each convect ion
cell extended half way around the annulus.

'I1
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Figure 4: Illustration of the flow in an annulus. (a) Top and (b) side views of the 2-wave regime,
The two waves and four convection cells in each layer travelled in a continuous circular path
without reflection.

Sometimes the pattern of co-rotating waves was disrupted by generation of a new
wave. This process began with a thickening of a small patch of interface ahead of anl
existing wave. The lump was swept towards the wave by the large-scale convective cir-
culations and grew in size as it engulfed other small interfacial lumps in its path. In
this manner, the lump became large enough to organize the surrounding convection and
disrupt the existing convection pattern. This new interfacial wave and its associated cells
propagated around the annulus in the opposite direction to the older waves. II general,
the entire leftward and rightward travelling flow patterns passed through each other un-
changed during the ensuing head-on collisions. However, when the colliding waves were
of significantly different amplitudes, the larger wave engulfed the smaller wave and the
convection pattern changed accordingly.

4 Onset of coherent motion and wavespeed measurements

Measurements of the flow in the annulus were made to determine the conditions for onset
of coherent. motions due to w,ý,e-convectioik coupling, and to test, the dependence of the
wavespeed on R, and Ap/pu, (table 1). The data indicated that strong coupling occured
when the density-anomaly ratio exceeded the critical vihue

B" = 1.17 ± 0.01 for 0.0005 <ý A/pc) < 0.0020. (4)

This value is close to the critical value for flows in a rectangular chanlel of horizontal
cross-section 15 x 5 cm. The similarity occurs because in both cases the colvectiol)
cells were about 15 cm long (three equally-spaced waves ill t.lh' an iilns organizvd thle

I I I I I I I I I III I I II I I - •



initial conditions onset of coupling final measurements
run symbol Ap/po R, t (h:m:s) Ap/po Rp t (lium:s) Ap/po R,
1 0 0.0005 1.02 1:10:24 0.0030 1.17 2:22:21 0.0037 1.24
2a x 0.0014 1.03 1:08:24 0.0058 1.18 2:47:01 0.0074 1.27
2b + 0.0014 1.03 1:00:39 0.0056 1.17 2:48:38 0.0075 1.28
3 0 0.0020 1.02 1:04:40 0.0118 1.17 2:51:00 0.0157 1.26

Table 1: Experimental parameters and results for annulus experiments. The final measurements
correspond to the time at which waves and organized convection became undetectable.

convection in each layer into six cells of length 21rF/2 x 3 ; 15 cm, where F is the mean
radius), and hence the horizontal convective velocities were similar.

Wave position was measured as a function of time. However, it was not possible to
obtain a complete record for every wave because of the complicated wave-wave interactions
and the practical difficulties associated with monitoring several waves at once.

The evolution of experiment 2a is shown in figure 5. A stable configuration of three
waves formed about an hour after the start of the experiment, and 20 minutes later tile
number of waves decreased to two. These waves were on opposite sides of the annulus

and propagated in the same direction. However, wave 2a.2 was larger and faster than
wave 2a.1 and, after a further 40 minutes, the waves merged to form wave 2a.3. This
wave and its associated convection cells extended half way airound tile aninulus. The
increase in the horizontal scale of the convection resulted in larger horizontal convective
velocities and a corresponding increase in the wavespeed. Meanwhile, a new wave formed

and propagated in the opposite direction to wave 2a.3, rapidly decreasing in amplitude
during the ensuing head-on collisions.

As in rectangular channels, the wavespeed in the annulus was largest when the interfa-
cial density difference Ap/po was large arid the interface close to static stability (R, --+ 1).

That is, when the buoyancy flux was largest. For example, there was a two-fold difference
in the fluxes between experiments 2b and 3, and the wavespeed in the latter flow was
about 25% faster than that in 2b. In addition, for flows having similar layer properties
the wavespeeds were larger for a smaller number of waves because the convection was or-

ganized over different horizontal lengths and therefore the horizontal convective velocities
were different.

Figure 6 shows the normalized wavespeed for each of the waves that were monitored
in detail. Because eacti wave organized the surrounding convection into two large-scale
convection cells the length scale used in calculating the convective velocities from (2) was
taken as the ineatl circumnference of the anitulis divided by twice the numbh'r of waves:

L = 2n1r/2n. (5)

Measurements for the different experiments collapse onto a .ingle curve, indicating that
the wavespeed varied approximately as the horizontal convective velocity. T"Ihe collapse is

not perfect, with waves 1.1 and 1.2 decaying more rapidly than the other waves. Howev'r,
this anomalous behaviour was probably an artefact. of tlhe poorly constrained wave position

measurements in the case with the weakest convection,

6z
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Figure 5: Evolution of experiment 2a. After about 80 minutes the flow consisted of two waves
(2a.1 and 2a.2) propagating around the annulus in a counter.clockwise direction. Small differ-
ence.s in the amplitude and speed of these waves gave rise to an overtakiuig collision and nwrge
to form wave 2a.3. This faster wave extended half way around the annulus. Meanwhile, a new
wave (I) formed and propagated in a clockwise direction before being desiroyed.
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Convection from bounded body in rotating fluid

B. Boubnov
Institute of Atmospheric Physics. 109017,Moso-owRussia

For many geoph. sical AM adtrophyslcai objects the rotation together with spatial inhoano-
genetty of energy sourses distribution in the gravity field detarmnens the origin and character of
the ituid motion. Two main canm of the convectiv motons in riring flids are usually conid-
rrml: the infinite plane layer with the temperature difeence on the horizontal boundares 11.21
&aWd rtaing annuli with the temperature differnce on the vertical walls 131. In nature more
olten the case of simultaneous non-uniform horizontally and vertically temperature gradient.
whwh. ot ixurew is much more tmplicaed from thateiical and experimental point of view
%ome exampk-4 of Obw mrxing xnfluence of the vertical and horizontal temperature gradjenti. it
rotalin fuird 4tin, taj fnd in 14.5, where mostly the external temperature distributions de-tne
%he" giadxintS

u"mnwctxm frotl Ow boundied txxdd is the another example of smultaneous influences both
trelhwraturr trad •rnt it n thhi aew thew gradrints usually are defined mostly be the geo-
i.w-riw pal tWt't ("One ternperature differeties AT between the temperature of body and

Ow. trmpe'atutr fluid far from body and additional with compare to the tiiinite planie spacr
- ain- tOW htrmi ital. .1:V of the heata. Itody I) will signhlicant change the motion of the fluid

Satin ronrotating is !i rotating c.asmcs

110. main detcituning nion.dimensional paranieters for localized convection in a plane horizon-
ta 3finit, lav.r , c-itsier that horizontal scale of the fluid layer is much more than D) in
it4iu.rotatag Otlw, are. Rayleigh. Ra, Prandtl. Pr numbers and aspect ratio. 6 = D/h, where h
, tOw depth of tht- flumi layer The choice of the proper length scale in the determination of
Im lav livgli h munim-T It or 1), depends on the values of 6. We define two related values ol the
tAVilesgh num•'..

flhij) - 63aliu•=

l)Iffem'nt regan., of (onTh,,i'tior without rotation for the different Ra and 6 from [61 are
,f•ewntud onm Figuro' I There are three main regit•le: I - laminar toroidal cell, which is usual
,.r : 4k' IIa'll 11 i1 tlwruiad plume, Ill - turbulent convection (region IY on Figure 1 -

'ralsaitonl regli i.tween the main regimes). The main diference between the regimes I and
II ar, n Iti, space cl.he to the heated body; at some diitance from which due to the turbulent
.m: raiiinnit ad the thermal plume we could not differ t!,:s regimes.
iciai .wtmt i (if the layer changes the flow patterns significantly. Par from the heated body
.d,, tg% iriiluetme for both regimes II and IIl can bp similar to the influence of the rotation

1,o a turtnJent -On1vection in the plane fluid layer In this case the vortex structure origin and
V"VIRN wrtice 'ul to baroclanic instability propagatc away from the upper worm (or down cold)

,o*w 1.2 6.7,w Near the heated body in regime Ill the influence of the Coriolis force to the
lto.u frvn t;w edgie of the disk will change this flow and intensive singular vortex (or number
-ý,! %rt w , Caba 11. o1`rigi Example of two tape of this vortices are prezented in Figure 2. The

Mail; adueltional non-dirm.nsional parameter which usually is used in -nnvection with rotation
la1,•ir nutilmr rF4 tu -- 4

,ev
2 ( where QI -1s the constant rotati. .) not so convinient

N,, AM* e,-i. tttn frolm t~ionded body. Very important role in this -,ill play the Rossby
,urntawr 14 ffii- t'it1)_ where the velocity scale V can be defined as characteristic geostrophic



vwlkxity. which was obtained [91 from the assumption that all dissipation of the kinetic energy
Sproduced in the Ekman boundary layer V = (•)I/2.
Usual critjcal value of Rossby number Re = I will define the role of rotation. When Ro >> 1
convection in turbulent regimes near the heated body will not differ from the non-rotating case,

but far from the body due to the turbulent entrainment horizontal scale of motion increases and
suitable Rossby number (defined by this scale) can be compare or less than 1, and influence of
rotation will be significant. The same effect will be and in regime II of thermal plume, where
near tlh' small heated body Rossby number usually is very large.
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When Ro << I due to a geostrophic balance convection moiton. above the disk differ
slightly from the convection motion in the infinite fluid layer 11,2], and near the boundaries the
baroclinic vortices are propagated away from the body 171. The cuse Ro =z I is more comlicated.
and singular intensive vortices (Fig.2) can developed in this case. These vortices are usual for
experiment on tornado-like motions, and the main conditions for the origin of this vorices is
updown flow and non-uniform rotation of this flow. Review of laboratory experiments on this
problem one can find in [101. Main differences of our experiments from the previous one are,
from one side, that this situation is more closed to the natural conditions and, from the other
side, that we have a simple possibility to simulate not only a origin of the vortex, but also its
propagation from the place of origin. The additional goal of these experiments - a possibility
to study transitions from the dlfferent convective regimes: from the singular intensive vortex
to the system of the less intens. ve vortices.
First experiments 16,111 were conducted in roLation or non-rotational fluid with some small
non-gomogeneity of the rotation (in spin-down regime). Two type of vortices were found: lam-



inar and oscillating (two stage of this oscillating vortex are presented in Fig.2). This situation
is usual and similar to a case of the convection from the bounded body for non-rotating cases.
The most important consequence of this transitions from laminar convection to the turbulent
one is the change of a heat flux which comes from the heated body to the fluid. For non-
rotating case the value of q in the dependence of non-dimensional heat flux - Nusselt number
on a Rayleigh number Nu = CRa changes from 1/5 for laminar convection to the 1/3 for the
turbulent one.

-, I

Figure 2.

For cocillating vortices two stage of vortex structure are suitable: spiral vortex, when is
vwry intenwiu heat flux front the body, and toroidal vortex when heat flux is much less. The
freqluenc. of oscillation of a process is appropriated to the Howard frequency in turbulent
convection, and the process is very similar to the Howard's process. In first stage toroidal
vortex keep a heat near the body awd after some critical value of Rayleigh number due to
instability the process come to intensive spiral vortex, in which a heat flux is much more
intensive and after some time when it is not enough a heat energy to supply the motion in
spiral vortex, the system comen to the toroidal vortex and process repeat again. Frequency of
oscillation is very close to the Howard frequency for non-rotating fluids, depends mostly from
the Rayleight number and change in the limit of 3-10 sec. In this stage of the experimental study
tLere more questions than answers, but we would like to put attentions for questions which
is very important for the understanding the basir vortex formation and can have geophysical
dpplhcations as to the origin of intensive vortices as a flow above the heating places in the
reiirli of turbulent conivection with the influence of the flow from the sidies and rotation.
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SIMULTANEOUS HEAT AND MASS TRANSFERS WITH OR WITHOUT EVAPORATION IN UNSTEADY
TURBULENT NATURAL CONVECTION

AND APPLICATION TO A LIQUEFIED NATURAL GAS STORAGE.

C.T. Pham and JiP. Petit

Ecole Centrale Paris. 92295 Chatcnay-Malabry Cedex. France.

ABSTRACT

A dcatratiifcaticon by double-diffusivc natural convection is nuniencally stadied in u 2D cavity co-itaining a fluid which
is initiallv stratified in temperature anid in concentration, the upper surface oif storage is either adiabatic or with evaporation
The fluid motion, linked to the opposite mass and thermal buoyancy forces. are obtained by resolution of thc unsteady
balance equations, wnittn with the stream function-vorticity formalism using the Boussinesq approximation. The turbulence
is introduced by a k-e standard modci in LRN (low Reynolds number) form. A finrite-difference technique using the A-D I
method is implemented. The convection term is disLcrtizcd using a hybrid scheme based on the mesh Reynolds number and
adapted to it non unifoirm grid The time sier is deternmind to ensure %tability and to opttmize the computation time. The
results are obtained fur Grth 1() 14 and lGrmtIO 0 '5 in the case of liquefied natural gas (LNG). The evolution of significant
problem variables ftemiperature. concentration. velocity, turbulent kinetic energy and turbulent dissipation) allow one to

follow the fluid destrati tication.

1. INTRODUE'TION

Tie present paper repo~rts a study ot'destrutification by turbulent naturul convection of A fluid contained in at 2D cavity
which is initially stratified in temperature and in concentration. The flow is driven by density variation% caused by
simultaneous heat and mass transfer Many free convection flows which oc-cur in nature and in industry oniginate from these
densitv variations: drying processes, solar energy itorage. storage of LNG, crystal growth. atmospheric flows Howover.
there is a lack oif literature concerning flows% driven by multiple buoyancy forces. because of the conmplexity tit the
phenomena. The problem (it combined temperature and concentration gradient in enclosure-i has been little studied iBl~ean
19113. (istrach 191t2u. Sievo~~der anti Petit 1911%. Trevisan and Rejan 19117) and siiihors have tined to solve steadv problems
Unsteady natural convection flow% have received contsiderable attention when densiiy vaniation are due only it) temperature
gradients IPatterson and Imbergetr 19801. Wang 11987) The un-iteady .ltae ot simultaneous heat and mass transfer is mostl '

tuidin the case of differenitially heated lateral walls iKamakura and Otoe 1993. Lee anid Hyun 19Q I1 The cast ol a flaiL
which is simultaneoiusly stratified in concentration and in temperature whose the desiratification is caused by lateral inflow
of heal and bottom liuxe%. is considered by Sevtolder and Petit i1198(91s. This study concerns only the laminar flow, with
thermal and mass (Jrashol nlumbers < 1tt7 in absolute values The tranblers at the interface arc more particalrts' studied by

Hergman r il 1!198151. but the considered casw corresponds to a %loss development of the ltower laver. the heaiing is ois.ill a
the bttr1om

Oui studs aippnoaches a real case (it I.N6 storafte in terms of the Grastiol numbers t 10141. will heat ti~ise aind tree
surface evaporations

2 MATHEMAT'ICAL FORMULAT`ION

Consider a 2D3 rectangular cavity with a hetghtilo-w~idth ratio Al-H/I. Th, jsity is closed (it with a tree surtace
evaporation Tie initial and boundawry conditions bor temprtalture and ctincentration oii the last ease are shown in Figure I
These conditions correspond to) those which occuor at the timne oif sicrase of LNG and although they present a cawe tit
Important prwtical iteruest, studliesofithis type are wety -arcteiSvt4ecr 199M1 The cavity is filled with ia fluid composd ori a
stinple diffusing chemical species (ot %malt ciincenirationt diffusing tin a solvent The mass evaporation is espress.ed it, intloss
tit the solution,

ii 2 - 44 11 Fig I Initial and b~oud ars :ii ii n

T-1 0i C(tfyt 1 0



Thc fluxes p~ *at the free surface are computed by a Hashemni and Wesson model (1971). adapted to the storage (if
LNGJ:

For T* >lT551: gihwhcrcc 1= 0, 13; s being the saturation temperature (t)

j*=-ip*,ij(hi~p) (2)

ForT*5 ITsat: V~=VlPhý() (3)

The dimensionless equations of momentum, energy. species. turbulent kinetic energy and turbulent energy dissipation
conservation are written with constant fluid physical properties and using thc Bou~ssnesq approximation:

al = Q+ Ap(4)

at

PR - (Gr 4h+IGr4 )"-+ Y-L)j +2--, i +2 2--ac + So (5)Dt ax ax ay ay

rn: =(Grli!EjCr.. Iv IT j_ ai~ v, IT16
Dt Pr PrI Priax ax Priay ay

EK (rr~J LA 1 avaC + LaI av4C (71
Dt SL Sc, Si., I% a Sct a ay

U- ((GrweIGrJ)" + 4 fk + -L av-. k +1 j_ +~v (M
Di Ok (1kdx ax Ok ay a

(L(tCjrpoýG4 "' + . 1 M1  + 1 av + I a'? ik S 9

(IT )C a) V.s o r u ird- fiv, du fivwhere Sit= ft;rs%+Iir.1 )Ii'Gri,h-+(fir.,( - +2 ---- It- .- ) +i.-- --. i -- 4---1 110
r~X dii )y,)% dy dii o~x idy' fy toll

=, w. 2(e). 2(Q-) 2 : vX-r,r.'Gr~b '1r + ~-1 - I 0 1
ý (). (y I () &tPt, ay SC, IVy

Sr C 'Cit r 2 ! 1 ei, I` . * ,2 EýCfv ((ir ,,tt u k~r, f, (r4 fi +k -Gr 1ef ' W.k (ox ) tY t)v 4% Os k~ l Ptl v sl '1
V. C.O (Iki I

In the turbiulent kinetic energy equation. the term oft transport by' diffusion i% atpproximated I~the ei xpre%%ion of
Launder and Spalding u1974). whereas the buoyancy fuorce effect% in the terms iii produvtttio and (it viscous damping of the
turbulent domspation equationl are wnitten introducing the apprommation of 11anjahlc and Launder (1971'i The values takeni
lto different coefriicinis of these equatiotis afre thoxe generally recommended tot nalural convection and LRN4 modeling
tAhiuwvalga and Chan 19149. Antonia and K m 1441l. Otoo utt)s IQM.S. Paiel .o at 11415. Vang asnd Aung 1985)
t'e.=~= it0. 0,=il 1 0.o 3 .C1, -1 4. (:,tQ 12. C, =07,C,ý=tt.04'

'the thermal and mas (Irahot nunmber% (Gith. Gin1  are based on the height and. rcspectise. oin the ingitial
temiperatuire and cioncenttatio ditlerenccs htice~en tao laver% We~ consider here onill the ca-e ot a negative rIna%% eliparlmull
owflicient. which means% (hat the todv torces due to, heat aind mass tranqter are ini oppsitmi dirtcuivn% 16ritl > 0. G~rill < 01i

I NIMERICAL SOUITION

1 1 Integration

The equations f4-4) have the %ans* general loini H 4 At- +A. + A,'~ A.. 4 1 (141



The stream function 'I and turbulent kinetic energy k are zero at the walls. Wall vorticity if is computed by

consider;ng a Taylor series espansion for the stream function in (he wall vicinity. The turbulent energy dissipation E i%
computed at a first point in the vicinity of the wall (situated in the turbulent inertial suhlayer) supposing universal
equilibrium

7•-iau c314 k 3/2

E=-uv = (15)
iy KAy 0

where K = 0.42 (Von Karman constant). This value is attributed to E at the wall (Ozoe e, at 1985). At the free surface.

41 = a"IoMx = 0. with the hypothesis that the free surface remains even and horizontal. for the vorticity. the boundary

condition is reduced to Q = 0 using the balance between the surface shear stress and the gradient of surface tension tOsirach
1982b, Villers and Platten 1981) while considering the case where the horizontal gradients of concentration and temperature
are small (Sdvdldcr 19901: the surface tension gradient is expressed with the same gradients and with the thermal and mass

Marangoni numbers (Bergmann 1986). In a first approach. k = 0 and c is computed by the method used at the wall.
The interior initial dimensionless values of the cavity are

T1¶=00.5. T:=045; CisOS C.5 =-0.5: '0"- sd'=11 k '; V"10 e = I102' 116)
A finite-difference technique using the A.D.I. method (Beam and Warming 1979. Roache 1976) is applied. The grid is

non uniform and Cartesian. The computational code which evolved from this method is an extension of the code developed
for the laminar regime with a semi-implicit method and a uniform grid (Sdvdldder 1990)(. The equation 114). written in the
fnrm RFIoit = f(F), has f(F) expressed by:

f(F) = B + (Sx + Sy)F 117)

where S, = qA + Axel /Jx + Axyoc
2 /Ix 2 

and Sy = (I -T1)A + Ay alay + Axy•)
2 /dy2  (18)

Equation (14) is discretized in time and space by A.D.I. method using (171 and one has thus:

(I - 4•.,)F A--B + H+(1 -- S,)- 19)
2 2 2

(I - -S,)F-' = 41B + (1+ L' S,)F"I2 (20)
2 2 2

where 0 I -S,) and ( I - L--S) a tridiagonal matrixes. The solution is obtained by a Gaussiun elimination method for it
2 2

vectorial computation or by application of Thomas algorithm (Roache 19761 for a scalar one.

For an optimal solution. a non uniform grid (71*61) is continuously generated by a function based on tan- 
1 . The finest

mesh is obtained in the vicinity of the walls and of the interface between the two layers,. the first mesh is of the order of five
thousandths of the cavity height.

For the discretization of diffusive terms, a centered scheme is used, whereas convection terms are discretized by a
hybrid scheme based on the mesh Reynolds number (Rex = Axmax(Axi. AXi. I/)Axy) : the centered scheme is used when

Rex(y1<2 and an upwind scheme when Rex(y)> 2. in order to have both advantages of a small numerical viscosity ot the

centered scheme and of a less strict limitation of the time step of an upwind (Sevd1dcer 199I11

3.2. Determination of at. Ti

As our purpose is to simulate unsteady phenomena, the time step has to he very small. It is important to choose ait
optimum value of the time step. This choice is based on two conditions:

a) "Pseudo Courant-Friedrich-Levy" condition: At, - e.mint 6'y •_,
Urea= Vmu

where e is a security factor that can be taken equal to 0.8.

hi Diagonal dominance condition which imposes: AtŽ = mtn( .
TIA (I -T)A

where TI = 0.5 yields more possibilities for At. This condition has only to he proved with the coefficient A (1 equation (9t
bectause A=t) in other equations.

In practice, to limit the accrued errors, the initial time step is chosen very small It is thus nccesary It' raisc the time

step in the course oft I, . computation : At"= mrin At'. At'. 8aA
where 8 is an evolution coefficient. equal to 1.002 for first thousand iterations and is later adjusted as a function of the

evolution of computed quantities

3A



4 RESULTS

Fig. 2. Isovalues of concentration,
temperature and kinetic turbulent
energy: Grth =1014, Grm - .1015.
closed cavity. t = 16

C T k
Max 0.5 2.8 1.8c-3
Min -0.5 -0.5 0.
A 0.09 0.30 1.6e-4

T k

Fig. 3. Isovalues of concentration.
temperature and kinetic turbulent

energy: Grth =!014. Gri = .1015,
closed cavity, t a 75

C T ki
Max 0.4 8.5 l.Oe-2
Min .0.5 -0.5 0.
A 0.08 0.82 9.5Ec4

CT k

Fig. 4. Isovajues of concentration.

temperature and kinetic turbulent

energy: Grth =1014. Grm - -1015.
closed cavity, t = 99

C T k
Max 0.3 9.5 1.2e-2
Min -0.5 -0.5 0.
A 0.07 0.91 1.1e-3

C T k

Fig. 5. Isovalues of concentratton.
temperature and kinetic turbulent

energy: Grth . 1014. Grm =i.10n S.
closed cavity. -I I 71

C T k

Max 3.2e-3 10.9 1.ec-2
Min.-3.2e-3 5.9 0.
A 5.9e-4 0.45 1.4c-3

C T k
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We consider a rectangular cavity with a height-to-width ratio equal to 2/3. filled by the liquefied natural gas (Pr = 2.1.

Sc = 121.0. Ath a 3.12 10-3 K-
1
. Pmi --1.34 10-3 kg- i m 3 ). Both initial layers have the same thickness, the lower layer is

hoter and more concentrated (TI*0> T2 *,. C 1 0 > C2 "0). The fluxes at the lateral and bottom wall:tpj = 10 WIm2.

- 15 W/m2 . The movement which is developed in the cavity depends on the initial and boundary conditions, on the
thermal and mass Grashof numbers and also on their relative importance:

N GrM . 0a.(Co.- C
Gros NMO(-T?.Tb

We are interested only in the negative values of the N. this is in the case where the Archimbde mass and thermal forces
are in opposite directions that ts the case generally occurred in the LNG storage. The Grashof numbers values actually used.
considering the physical conditions of the LNG storage, correspond to the lOrn diameter tanks with a 7m filling height. As
the problem has an axis of symmetry. the isovalues figures are presented by a left hall domain for C. k and one nght for T

The Figures 2 to 5 present the concentration, temperature and turbulent energy (k) at the different destratification times
for N = -10 and for a upper adiabatic surface. The complete destratification has some phases and is obtained after about a
quarter hour on order. On the first phase. either of two layers remains visible (Fig. 2 and 3). the thermal and mass diffusion
develops essentially at the interface level where the temperature and concentration gradients are most important. The
turbulent energy develops preferentially at the bottom level and invades afterwards all the cavity, remaining always being

preponderate at the bottom. There, the thermal fluxes are most important (qpb/'Pl = 1.5). The second phase presents very
clearly the interface that bursts at the cavity center (Fig.4) and that leads to the complete destratification: the concentration is
practically constant at the all tank (Fig,5). there is an unhomogeneity in the isotherms by the wall heating.

The ratio N has a very important role for the desuratification; the interface "bursting" is driven when this ratio is near

-I. The Figures 6 and 7 correspond to the same case that precedes. but with NO n -I, all others conditions being idenucal.

Thus, one has: the first phase is inexisting. the destratification is achieved after a extremely small time (about 2 mi.).

Fig. 6. Isovalues of concentration,
temperature and kinetic turbulent
energy: Grth =1014. Grin .1014.
closed cavity. t = 4

C T k
Max 0.4 2.4 7.e6.3
Min -0.4 -0.4 0.

A 0.08 0.26 6.9c-4

c T It

Fig. 7. Isovalues of concentration.
tcmperature and kinetic turbulent

energy: Grth =1014. Gm -1014.
closed cavity. = 33

C T k
Max 

4 .6e-3 7.0 8.8e-2
Mm -7.2e-3 2.0 0
A l le-4 0.45 8 Oe-3

C T I



The Figures 8 to 10 present the concentration, temperature and turbulent energy at the different times of the
destratification while there is an evaporation at the free surface. All others conditions are same as the first case. This
evaporation is modeled by the law of Hashemi-Wesson (1971) that is modified for LNG because in this case. there is a pan
of the solvent being evaporated, but the solution

Fig. 8. Isovalues of concentration.
temperature and kinetic turbulent
energy- Grth =1014. Grm = -1015,
evaporation, t = 9

C T k
Max 0.5 1,8 2.3e-3
Min -0.5 -0.5 0.
A 0.09 0.21 2.1e-4

C T k

S. Fig. 9. Isovalues of concentration,
temperature and kinetic turbulent
energy: Grth -1014. Grm -1015,
evaporation. t = 24

_C T k
Max 0.9 4.5 9.3e-3
Min -0.5 .0.6 0.
A 0.1 0.46 8.5c-4

C T k

CD "Fig. I. Isovalues of concentration.
temperature and kinetic turbulent
energy: Grth =1014. Grit = .1015.
evaporation. t = 71

C T k
Max 4.1 8.4 1.l- I
Mm -0.48 .049 0
A 0.4 0.81 9 9C-3

T T k

The destrati ication is clearly faster (about 4 min.). Dunng the first phase when all two layers persist, the thermal and
mass diffusion at the interface level is not pratically existing: the cooling of the upper layer by evaporation is ex.actly
compensated by wall thermal supply at the upper layer level. The lower layer presents a very important superheat The
interface vanishing is nearly instantaneous, freeing accumulated energy in the lower layer and producing a vet, timportnt
evaporation peak (rollover). In the next, the concentration is homogeneous in the most of the tank excepting at the free
surface level where it subsists a small evaporation.

6



5 CONCLUSION

A numerical method has been developed to solve the non linear parabolic equations poverning the turbulent motions
induced by double-diffusive transfer in the rectangular cavities of large dimensions This numerical method is stable with the
high Grashof number because the thermal and mass body forces are opposed. The results obtained for an initial stratification
of the LNG allow one to follow the fluid destratification until the rollover phenomena.

Acknowledgements : The computational means used were putted at our disposal by the Institut de Dfvcloppement ci
des Rcssourccs en Informatique Scientifique (IDRIS).

NOMENCLATURE

Subscript I = Lower layer
2 = Upper layer

Superscript n = Time step number
* = Dimensional
0 = Initial condition

a = Thermal diffusivily (m
2

/s)

C = Species concentration = (C"-C*OYACI*0. where C'"=0.5( Cq'I+C*(). AC" =C*1i.C*1

D = dinary diffusion coefficient (m
2/s)

g = Acceleration due to gravity (m/s
2

)

Grm = Mass Grasohf number a OSgHWAC*&i12

Grth a Thermal Grashof number = ,3gHWAT*"/v
2

hlg = Enthalpy of evaporation (lfkg)
H = Height (m)

j = Mass flux = j*H/(DAC*")
L = Width of the cavity (m)

k a Turbulent kinetic energy = k*(v/H)"
2

(GrAGr,)"1

Pr Prandtl number = v/a

p = Heat flux =(p*H/(XAT*")

Sc a Schmidt number = v/D

t aTime =t*(v/H)(Gr,!•Grý)("

T Temperature = (T*T*'I)/T*". where T*"--0.5( T''+T*,). AT*'=T-,11T"

u -v) = Velocity in x~yI direction = u" [v*](H/v)(GrAGr,•"
4

u'. v = Velocity fluctuations (m/s)
xjy) = Cartesian coordinates = x*ly* /H

O3m = Votumetric coefficient of expansion with concentration . .(l/ p)ldp/dC*)i. (kg' Ir,3 )

Pth = Volumetric coefficient of expatraion with temperature = -( Ip)(dpldT* h. IK- 1)

E Turbulent energy dissipation -- e* H
4
vi(GrCrGrA') "

11 = Zeroth order coefficient in x dependence equation (19)

X = Thermal conductivity (WImK)

v = Kinematic viscosity of the fluid (tm/s)

v. = Turbulent viscosity = v~v`(GrsGr,,•')"
p = Fluid density (kg1m

3 )

LQ = Vorticity = I0 H2v '(Gr, ,l)"'

aP = Stream (unction = 'P*v '(Gr,,+Or,A )"
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STRUCTURE AND DYNAMIC:; OF FILAMENTS IN THE CANARY hND BENGUELA.
UPWELLING REGIONS

A.G.Kostianoy (P.P.Shirshov Institute of Oceanology. 23.
Krasikova str., Moscow, Russia).

Satellite data (thermal and colour imagery) has changed our
view on the mesoscale structure of coastal upwellings after re-
latively recent discovery of cold, chlorophyll-rich, narrow (<50
km wide) offshore flowing filaments off the west coasts of North
America, North and South Africa. On the base of archive satelli-
te IR images and oceanographic data we investigated structure
and dynamics of surface filaments in the Canary (15 25"N) and
Benguela (15"-32"S) upwelling regions.

The data used in the study of the Canary upwelling region
has been collected between 1984 and 1987. Besides the system of
cold filaments (51 jets), which extend off-shore and beyond the
coastal zone, cold filaments extending along the Banc d'Arguin
border ant-- warm filaments (9 jets) spreading from the ocean to-
wards the coast were discovered. Cold filaments were concentra-
ted near 23", 20"30', 19" and 18"N. The seasonal variability
shows that 30% of them werQ observed in May-June and 58% in No-
vember-December. The maximal length of cold filaments lies in
the range 50-250 km, the width 10-75 km, the temperature anomaly
-0.8...-2.4"C, the maximal velocity 35-218 cm/s. Three-dimensio-
nal velocity structure of filaments is shown on the base of ADCP
ship data. The most striking is the observation of large verti-
cal velocities in filaments.

The data used in the study of the Benguela upwelling region
has been collected during January-February 1986 and April-June
1988. Besides the system of cold filaments, large warm filaments
(jets) spreading from the open ocean towards the coast were ob-
served also. Cold filaments were concentrated near 18-19-,
22'-23"30' and 26"-27"30'S without any correlation with bottom
topography irregularities. The length of cold filaments lies in
the range CO-370 km, the width 10-80 km, the temperature anomaly
-0.8.. -2.4"C. The estimates of the velocity of filaments deve-
lopment give values up to 1-2 m/s. Warm jets were as long as
140-320 karr with positive temperature anomalies up to 2.4"C.

It was found that seasonal variability of the filaments lo-
cation in both upwelling regions depends on general upwelling
intensity motion along the coast of North-West and South-West
Africa during a year. A comparison between two system of fila-
ments was made.

Estimates of cross-frontal water exchange due to filamenta-
tion show that these coherent structures play a major role in
the water and particle exchange between coastal zone and the
open ocean. Using the statistical data on filaments, it is pos-
sible to estimate the value of the velocity of cross-frontal wa-
ter exchange, which equals to Ue = 0.5 - 1.5 cm/s. This value
may underestimate the real one, because the water transport due
eddies, subsurface lens-like eddies, subsurface jets and some
other mesoscale structures was not taken into account because of
the lack of information.

Recently, we introduced a new non-dimensioanl parameter P
in order to estimate the "permeability" of fronts to water exc-
hange (Zatsepin, Kostianoy, 1992). P = Ue/U, where Ue is the ve-
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A Study of a Plane Mixing Layer With Cross Shear

Paisan Atsavaprancc and Mory Gharib. Graduate Aeronautical Laboratories,
California Institute 9f Technology. Pasadena, CA 91125

It is widely recognized that stratified mixing layers play a major role in both
natural and industrial flows. Their understanding poses a challenging problem involving
vorticity generation by baroclinicity. set in a complex coexistence and interaction of 2-D
and 3-D structures on route to turbulence. The central goal of our current paper is to
understand the nature of instabilities and turbulence in a plane stratified mixing layer
complicated by the presence of cross shear. It is our speculation that the interaction of
cross shear with plane mixing layers offers a unique turbulence control technique in
industrial flows, and that it is widespread in nature because one important characteristics
of natural mixing layers is the freedom of the mean shear to change direction in a tran-
sient way during the development of the mixing layer. In a jet stream or an oceanic shear
layer, for example, the mean flow could easily shift direction during the development of a
mixing layer. In an estuary flow, the river channel could expand or contract in a way as
to introduce cross shear. Such an added complexity could change the characteristics of
the instabilities and turbulence in very profound ways. resulting in different routes to
transition and different turbulent states.

An apparatus similar to that used by S.A. Thorpe is constructed for the purpose of
this study. In his 1968 paper, he describes how a temporally-developing stratified mixing
layer can be generated without the presence of a splitter plate. using an enclosed horizon-
tal tank filled with a !ayer of salt water and a layer of fresh water of equal depths. The
tank is tilted off the horizon generating the potentials for the two layers to accelerate in
opposite directions, resulting in a velocity shear at the interface. A similar tilting tank is
constructed for this study, but with the allowance for the tank to be rotated around a
secondary axis. The tank. 5 in. x 30 in. x 96 in. in dimensions, is first tilted around the
first axis: and a certain time later, while the resulting shear layer is still developing, we
tilt the tank around the second axis, generating the cross shear. The second tilt essentially
allows us io control the overall mean shear by imposing cross shear on the developing
primary shear layer. This is equivalent to realistic situations, in which the mean shear is
not fixed in one direction but rather can change direction in a way that introduces cross
shear to the initial mixing layer. The flow generated in such an apparatus well represents
a generic temporal and complex turbulent flow in a non-equilibrium state, found in nature
and industry. The novelty of our approach are the control of an added degree of com-
plexity (cross shear) that other experiments have so far ignored and the lack of some
flaws that are inherent in another type of apparatus. Traditionally, a shear tunnel with a
straight splitter plate partitioning a low and a high speed flow is used (Koop & Browand,
1980). but it falls short in many ways. The presence of the flow-manipulating screens
and the splitter plate can seriously alter the flow characteristics by introducing distur-
bances and artifacts into an otherwise clean and free mixing layer. The presence of a
wake component is undesirable. And the flow generated in a shear tunnel exhibits an
elliptic nature to a certain degree: downstream processes can create finite disturbances



upstream in a feedback mechanism. whereas a natural mixing layer, like ours, is temporal
and purely parabolic in nature: dynamics of the flow obviously cannot influence pro-
cesses that have already happened. The schematics of our experimental apparatus is
presented in Fig. I.

Preliminary flow visualizations and experiments have been carried out. using
laser-induced fluorescence (LIF) technique and digital particle image velocimetry (DPIV.
Willert & Gharib. 1991). The specific gravities of the top and bottom layers are 0.998
and 1.085, respectively, giving a density stratification of about 8%, normalized by the
average density of the two layers. Flow visualization from the top (Fig. 2 and 3). using a
technique to make the bottom layer opaque in order to visualize the interface, reveals
many interesting features. Fig. 2 shows a plan-view photograph of the flow developed
from a two-dimensional shear. The dark lines represent the edges of vortical structures
that form shadows when the interface is illuminated from the top. Observations reveal
that although the flow is generated in a very low-disturbance environment, the resulting
Kelvin-Helmholtz instability is most often time not perfectly two-dimensional, The
Kelvin-Helmholtz instability tends to develop into different regions of Kelvin-Helmholtz
rollers, and it is possible to have slight amplitude and phase discrepancies among these
regions. Each of these regions would eventually grow large enough in amplitude to
interact with its neighbors. The consequence of these amplitude variations and phase
shifts are complex interaction of the rollers reminiscent of patterns in desert sand dunes.
The resulting rollers would generally be spanwise but exhibit defects or dislocations
where the end of one roller can connect to the midspan of another. This observation
seenm to indicate that stratified mixing layers have finite spanwise coherence scales
which are in the order of a few Kelvin-Helmholtz wavelengths. Observations of similar
dislocations of Kelvin-Helmholtz rollers have also been recorded in a homogeneous
mixing layer (Browand & Trout, 1980).

Fig. 3 illustrates the top view of the flow patterns in a shear layer to which cross
shear is introduced a few seconds after the primary shear. As expected, the usual Kelvin-
Helmholtz instabilities develop as a result of the main shear, with the main rollers aligned
along the spanwise direction (z-axis). In addition streamwise streaks which are roughly
perpendicular to the main rollers develop along the braid (Fig. 3a.). The length scale of
these streaks, after they first appear. is initially about 0.3 in.. an order of magnitude lower
than that of the main rollers which have a wavelength of about 3 in. As the mixing layer
develops, the length scale of the streamwise streaks increases, seemingly going through
successive doublings in scale (Fig. 3b.), and eventually, the mixing layer goes through
turbulent transition. The y-z view or a cross-cut view of these small structures (Fig. 4)
reveals that they seem to be structures of concentrated streamwise vorticity, and they are
of the same sign everywhere. In fact they behave very much like Kelvin-Helmholtz
rollers in that they roll up and pair. Fig. 5 is a sequence of pictures showing the pairing
of two streamwise vortices. It is normal for these streamwise vortices to pair twice or
three times, eventually making their sizes comparable to those of the main rollers which
pair much slower. Fig. 6 shows a schematics of such a situation: the sketch on the left is
the overall view of the mixing layer. and the sketch on the right shows what an y-z view
would look like. These streamwise vortices are co-rotating and obviously of a different
type of streamwise vortices from the counter-rotating type as described by Bernal &



Roshko (1986), because counter-rotating streamwise vortices would reveal "mushroom"
shapes in the y-z plane, like that depicted in Fig. 7.

It is cluar from these observations that the streamwise streaks are in fact concen-
trated streamwise vortical structures and that they are direct consequences of the cross
shear. Deep understanding of the nature of these streamwise vortices is still a long way
away, but a rudimentary picture of the dynamics can be derived from the clues available.
The introduction of cross shear to a developing plane mixing layer essentially has the
effect of imposing uniform streamwise vorticity everywhere in the mixing layer. This
,treamwise vortex sheet feels the presence of the flow field of the main mixing layer, and
as a result becomes unstable giving rise to the concentrated streamwise vortices. The
stability problem of the streamwise vortices can be qualitatively explained. In the braid
region of the main rollers around the stagnation point, the local flow field looks like that
of Hiemenz flow. This flow field creates a strain field that would magnify by stretching
any streamwise vorticity present. With a uniform streamwise vortex sheet imposed upon
the mixing layer, the stretching action in the braid region would magnify the strcamwise
vorticity there and make it very likely for the sheet to go unstable in a Kelvin-Helmholtz-
like manner. The braid flow field would further stretch these Kelvin-Helmholtz-like
streamwise vortices, which would go through pairings similar to normal Kelvin-
Helmholtz rollers. The fact that the streamwise vortices are so perpendicular to the
spanwise ones are most likely due to the fact that the main Kelvin-Helmholtz roll-up
depletes the braid of the spanwise vorticity and concentrates most of it in the rollers. The
vorticity in the braid, after the introduction of cross shear, is therefore mainly in the
streamwise direction. One would expect the length scale of the streamwisc vortices to
scale on the thickness of the layer in the braid where they originate. Since the braid is
continually being stretched thinner and thinner, it is expected and in fact observed in our
experiments that the length scale of the streamwise vortices would be lower than that of
the main rollers and would depend on how thick the braid is when the cross shear is
introduced.

We believe these co-rotating .treamwise vortices to have great significance in
determining the nature of the mixing layer. Not only would the characteristics of the
turbulence be different but also the degree of mixing would be greater as well. Measure-
ments of the mixing layer thickness, before and after the tank tilting, shows that mixing
layers with cross shear get 1.6-2.0 times as thick as the mixing layers without cross shear.
In u simple two-dimensional mixing layer, it is the main rollers that do most of the en-
trainment and mixing, with the braid contributing little to the process. The presence of
these streamwise vortices in the braid, which seemingly behave much like the main
rollers themselves, would greatly enhance mixing, not only by entratining and mixing
fluid themselves but also by interacting with the main rollers, creating more small scale
turbulence. Since the streamwise vortices grow to a size comparable to that of the main
rollers, the interaction between the two perpendicular structures can be expected to be
significant. resulting in more mixing and earlier transition. The complete study of the
interaction of a mixing layer with cross shear and the resulting turbulence characteristics
is therefore of immense significance for a better understanding of natural and complex
industrial turbulence.
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Fig. 2. Top view of a plane mixing layer showing dislocations of the rollers
during curly rollup.



a)

b)

Fig. 3 Top view of a mixing layer to which a weak cross shear is imposed.
Streamwise streaks develop in the braid and increase in scale as they evolve. The times
of a) and b) are 5. I and 5.5 seconds after initiation of main tilt. Cross ihear is introduced
at 5 secs, shortly after the onset of the main Kelvin-Helmholtz instabilities (at 3.9 sec.).
The Reynolds number of the main shear is 2800. The Richardson number is 0.03 for the
main shear and 0.5 for the cross shear. The cross shear is about 20% of the main shear.
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Fig. 4 A cross-sectional view of the streamwise streaks showing the "co-rotating"
streamwise vortices. The image is taken 5.6 seconds after the initiation of the main tilt.
Cross shear is introduced at 4 secs, about the same time as the onset of the main Kelvin-
Helmholtz instabilities (at 4,1 sec.). The Reynolds number of the main shear is 1600,
The Richardson number is 0.07 for the main shear and 0. 15 for the cross shear. The cross
shear is approximately 50% of the main shear.

a) b) c)

Fig. 5 A sequence of pictures showing two "co-rotating" streamwise vortices in
the process of pairing. The conditions are the same as in Fig. 4. The times of the se-
quence are 5.60, 5.73, and 5.85 seconds after the inition of the main tilt.
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Fig, 6 Schematics for structures in a mixing layer with cross shear.

primary shear

overal! view cross-cut view

Fig. 7 Schematics for structures in a mixing layer wko-cross shear, as observed by
Bernal & Roshko. 1986. A mixing layer with cross shear does not give rise to counter-
rotating streamwise vortices as illustrated here.
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Heat and mass transfer in stably stratified flow

SATORU KOMORI, KOUJI NAGATA AND YASTJHIRO MURAKAMI
Department of Chemical Engineering, Kyushu University,
Hakozaki, Fukuoka 812, Japan

Abstract. Heat and mass transfer mechanism in strong stable thermal-stratification is
experimentally investigated in unsheared water flows downstream of turbulence-generation
grids, where both active scalar (heat) and passive scalar (mass) are diffused. Instantaneous
velocity, temperature and concentration are simultaneously measured using a laser Doppler
velocimeter, a resistance thermometer and a laser-induced fluorescence technique, and
turbulence quantities such as turbulent scalar fluxes, joint probability density functions and
cospectra are calculated. The results show that the difference of turbulent diffusion between
heat (active scar) and mass (passive scalar) in strongly-stratified water flows appears in the
high-frequency region and it results in a little larger turbulent mass flux than heat flux. The
dissipation rate is rather different between heat and mass, and therefore the temperature
fluctuation more rapidly decays than the concentration fluctuation. The counter-gradient scalar
transfer occurs in strongly stably-stratified conditions, and the counter-gradient transfer
mechanism is explained from the relationship between buoyancy and turbulent motions. The
counter-gradient scalar transfer is initiated by the buoyancy-induced small-scale finger-like
motions and then the contribution of the large-scale motions pushed back by buoyancy to the
counter-gradient scalar transfer becomes dominant. The contributions of the small- and large-
scale motions in the present thermally-stratified water flows are quite contrastive to the
measurements in previously investigated thermally-stratified air flows where the counter-
gradient heat transfer is generated mainly by large-scale motions.

1. Introduction
Thermally-stratified turbulent flows occur in the ocean, the atmospheric boundary layer,

and in many industrial operations, and there turbulent diffusion of scalar quantities such as
heat and mass is strongly affected by buoyancy. It is, therefore, of great practical interest to
investigate the heat and mass transfer mechanism in stratified flows in modeling the turbulent
diffusion of scalar quantities in the environment and in designing industrial equipments with
stratified flows.

Extensive studies on the turbulence structure and scalar transfer have been performed in
stably stratified flows. Though most of fundamental phenomena appearing in stably stratified
flows seem to have been investigated up, several problems to be experimentally clarified still
remain. One of the problems is the counter-gradient scalar transfer in strong stable
stratification. Komori et al. [1] have found the counter-gradient heat and momentum transfer
in a thermally-stratified open-channel water flow with weak shear, and Rohr et al. [2] have
also investigated the counter-gradient mass transfer in density-stratified open-channel flows.
However, these studies on stratified water flows have not clarified the details of the counter-
gradient scalar transfer mechanism. Especially the contribution of small-scale motions to the
counter-gradient transfer has not been fully discussed (2]. For stably-stratified air flows,
Lienhard and Van Atta [3] and Yoon and Warhaft [4] have observed the counter-gradient heat
flux (CGHF). Their studies have showed which scale motion contributes to the CGHF, and
they also have suggested that it is of interest to investigate the effects of the Prandtl number on
the CGHF.

On the other hand, Deissler [5] have discussed the effects of the Prandtl number on the
CG-H in weak turbulence by solving the linearized two-point correlation equations, and he
have predicted that the contributions of large- and small-scale motions to the CGI-* are quite



different between high and low Prandtl numbers. Recently, Gerz et al.[6] and Holt et al. [7]
have carried out direct numerical simulations (DNS) for homogeneous stratified flows, and
they have predicted the effects of the Prandtl and Reynolds numbers. However, the results of
the DNS with high Prandtl and Reynolds numbers are still controversial, and therefore more
reliable measurements of the counter-gradient scalar flux in stratified water flows with high
Prandtl numbers are required.

Another problem is the difference of turbulent diffusion between active scalar (heat) and
passive scalar (mass) in thermally-stratified water flows. The difference may be generated by
different molecular diffusivities between heat and mass, and it may be significant in strongly
stratified f.ows where turbulent motions are much suppressed by buoyancy. However, this
prnblem has not been experimentally investigated in stratified flows where both heat and mass
are simultaneously diffused.

The purpose of this study is, therefore, to experimentally investigate both the counter-
graclient scalar transfer mechanism in unsheared thermally-stratified water flows and the
effects of the Prandtl number on the counter-gradient scalar transfer. This study also aims to
experimentally clarify the difference of turbulent diffusion between heat (active scalar) and
mass (passive scalar).

2. Experiments
Figure I shows the measuring system and test apparatus. The test apparatus used was

the water tunnel which was made of polymethylemethacrylate (PMMA), Im in length and
0.ix 0.Im in cross section. The waters with high and low temperatures were pumped up
from two big storage tanks to the head tanks, and they passed tie contraction, which was
separated by a splitter plate into upper and lower sections. The high-temperature water in the
upper sream was heated by a boiler in a storage tank and the temperature was regulated by an
electric heater connected to a thermometer. A turbulence grid was installed at the entrance of a
test section, and it was of round-rod, square-mesh, single-biplane construction. The mesh
size M and the diameter of the rod d were 0.02 and 0,003m, respectively. Both mean
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Fig. 1. Measuring system and test apparatus.
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velocities of upper high-temperature and lower low-temperature streams, U. were set to the
same value of 0.125m/s, so that a shear-free (unsheared) mixing layer was developed
downstream of a turbulence grid. The Reynolds number based on the mesh size was 2,500
and the turbulence Reynolds number based on the integral scale was estimated to be about 20
at x/M=6. Three stably-stratified conditions were used and the temperature difference between
upper and lower streams was set to 3K, 7K and 15K, respectively, The temperature
difference corresponded to the Brunt-Viisila frequencies of N= 0.67, 1.17 and 1.75Hz at
x/M-6. The sodium fluorescein dye (C20H10Na 2O5) was homogeneously premixed into the
upper stream to investigate turbulent diffusion of the mass (passive scalar) which is diffused
with heat.

Instantaneous velocity, temperature and concentration were measured using a two-
component laser-Doppler velocimeter, a resistance thermometer connected to a cold film I-
probe of lOgm diameter and a laser-induced fluorescence method. The details of the
simultaneous measuring techniques for velocity, temperature and concentration are described
in Komori et al.I1, 8].

The measurements were made on the centerline in the region of 6sx/Ms20. The
sampling interval and the sample size were 0.00025 sec and 240,000, respectively.
Statistical processing of the digitized data was made by a computer (SONY NWS-3860).

3. Results and discussion

3.1 Mechanism of counter-gradient scalar transfer
Figures 2 and 3 show the streamwise variations of vertical heat and mass fluxes, .v and

.-7. Here the vertical heat and mass fluxes are normalized by the product of the mean velocity
i and the initial temperature- or concentration-difference. For all stratified conditions, the
distributions of the heat (active scalar) flux are quite similar to the mass (passive scalar) flux
distributions. Both heat and mass fluxes decrease with increasing the stability ( the Brunt-
Vaisala frequency N). In the strongest stratification case of N=I.75Hz, the fluxes change their
signs in the region of l0<x/M<20 though the mean temperature and concentration gradients
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14 14 . II. . I
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12 --a--Nx1.17Hz 12 --A--N-1.7Hz
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Fig.2. Streamwise variations of Fig.3. Streamwise variations of

vertical heat flux -ve. vertical mass flux V-y.
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are always positive in the upward direction. The counter-gradient heat and mass fluxes are
generated by two combinations of positive v 2nd 0 and negative v and e or positive v and Y
and negative v and y. In fact, the joint probability density function of v and 0 in Fig.4 shows
that in strong stratification of N=l.75Hz the large positive and negative v are mainly
associated with large positive and negative 0, respectively, (Fig.4b) whereas the joint
probability function in weak stratification prevails into the second and fourth quadrants
(Fig.4a). The behavior of the joint probability function of v and y was similar to that of v and
0. Thus, it is found that the counter-gradient heat (active scalar) and mass (passive scalar)
transfer in strong stratification is generated by both upward motion of hot eddies with high
concentration and downward motion of cold eddies with low concentration.

5 5(a) 
(b)

1s -5 --

S0 5 -5 0 5
V/V1  v/v1

Fig.4. Joint probability density function of v and 0;
(a) in weak stratification; (b) in strong stratification

Figures 5 and 6 show the cospectra of v and 0, Csve, at three locations of x/M=6, 10 and
14 under two stratified conditions of N=0.67 and 1.75Hz, and the magnified cospectra of
N=1.75Hz at x/M=10 and 14 are shown in Fig.7. The area of the cospectra multiplied by the
frequency f indicates the quantity of the heat flux, and the negative and positive values of Csve
correspond to down-gradient heat flux (DGHF) and counter-gradient heat flux (CGHF),
respectively. In weak stratification the cospectra at all locations are always negative in the
whole frequency region (Fig.5). The distributions of the cospectra show that all turbulent
eddies contribute to the DGHF in weak stratification. In strong stratification of N=1.75Hz,
the cospectrum starts to change the sign from the higher frequency range and the cospectrum
at x/M=14 becomes positive in the whole frequency range (Figs.6 and 7). This means that in
strongly stratified water flows the small-scale motions first contribute to the CGHF and the
large-scale motions follow the small-scale motions. In fact the flow visualization based on the
laser-induced fluorescence technique shows that the buoyancy-induced upward and
downward small-scale finger-like motions intruding into the original levels appear in the
downstream region near x/M=10 and the large-scale eddies are pushed back by buoyancy
toward the original levels in the region near x/M=14. The contributions of the turbulent eddies
to the counter-gradient heat transfer are quite different in air flows [3,4]. The buoyancy-
induced small-scale finger-like motions will never be observed in stratified air flows, since the
relative molecular diffusion of heat is rather faster in air flows than in water flows. The
difference between stratified water and air flows supports the predictions by Deissler [5], Gerz
et al.[6] and Holt et al. [7), Stronger buoyancy effect on the counter-gradient heat transfer in
water flows can easily be seen when we compare the correlation coefficient between v and 0
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plotted against the dimensionless time Nx/U with the previous measurements in air flows
[3,4].
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3.2 Difference of turbulent diffusion of hear (active scalar) and mass (passive scalar)
When the heat flux (Fig.2) is compared with the mass flux (Fig.3), the absolute value of

the mass flux is a little larger than that of the heat flux. Especially in strong stratification of
N-1,75Hz the difference reaches about 10% of the mean flux in the region of 10<x/M<20.
The difference between the heat and mass fluxes is due to the difference between the molecular
diffusivities of heat and mass. As shown in Figs.8 and 9, the comparisons between the
cospectra Csvy and Csvo at two locations of x/M=10 and 14 in strong stratification of
N=1.75Hz show that the contribution of higher-frequency motions to the counter-gradient
mass flux is larger than that to the counter-gradient heat transfer. Of course, the effect of the
molecular diffusivity on the dissipation rate becomes significant, and therefore the mean
squared temperature fluctuation more rapidly decays in the downstream region than the mean
squared concentration fluctuation as shown in Fig. 10. These effects of the molecular diffusion
on heat and mass transfer will not be observed in stratified air flows since the Prandtl number
is very close to the Schmidt number.
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Fig.9. Comparison between the cospectra Fig. 10. Streamwise variations of the mean
Csv7, and Csvo at x/M=14 in squared temperature and concentration
strong stratification of N=l.75Hz. fluctuations in strong stratification of

N=l.75Hz.

4. Conclusions
Heat and mass transfer mechanism in strong stable thermal-stratification was

experimentally investigated in unsheared water flows downstream of turbulence-generation
grids. The main results from this study can be summarized as follows.

1. The counter-gradient scalar transfer occurs in strongly stably-stratified conditions. The
counter-gradient scalar transfer is initiated.by the buoyancy-induced small-scale finger-like
motions and then the counter-gradient transfer by the large-scale motions pushed back by
buoyancy becomes dominant in the downstream region. The contributions of small- and large-
scale motions to the counter-gradient scalar transfer is quite contrastive to previously
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investigated thermally-stratified air flows where the counter-gradient heat transfer is generated
mainly by large-scale motions. 4

2. The difference of turbulent diffusion between heat (active scalar) and mass (passive
scalar) is induced by the difference between the molecular diffusivities of heat and mass in the
higher frequency region, and the absolute value of the mass flux is a little larger than that of
the heat flux. Though the effect of the molecular diffusion on the mean heat and mass fluxes is
not so Ihu ge, the decay of the scalar fluctuation in the downstream direction is strongly affected
by the molecular diffusion.
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Snime Observations Related to Evolvino Kelvln.Haimholtz Billows
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Abstract
Laboratory experiments were carried out to investigate the effects of relative

thicknesses of velocity and density profiles and their displacements with respect to each
other on the characteristics of Kelvin-Helmholtz (K-H) billows that are developed in
stratified shear flows. Two experimental facilities were used. First, a two-layer stably
stratified shear flow was employed to obtain a time series of the local Richardson number,
Ri a AbAz/Au2 , where Ab is the local buoyancy difference, Au is the local shear and Az =
2.7 mm is the scale over which the measurements were made. Second, a tilting tube was
used to obtain standing K-H billows in an accelerating shear flow. The results illustrated
the development of local overturning motions (convective instabilities), as K-H billows
advect past an Eulerlan measuring point. The results showed that the local Richardson
number can be small compared to the global Richardson number based on bulk flow
parameters, and hence suggest that inferences should not be made solely based on global
Richardson-number measurements. Laser-induced fluorescence technique was used to
obtain both quantitative and qualitative results concerning the internal temporal and spatial
density structures within K-H billows. Digitized images show that mixing begins to appear
at the core area of evolving billows, long before their collapse. Thorpe displacements
evaluated from the images were used to delineate the locations where convective
instabilities occur within billows.

1 Introduction
Kelvin-Helmholtz instability has been considered as a possible cause of clear-air

turbulence in the atmosphere. The turbulence generated due to shear instabilities has been
identified in atmosphere (Gossard 1962; Scorer 1969), in oceans (Woods 1968; Heber et
al 1992; Marmorino 1987) and in lakes (Thorpe & Hall 1974). Comprehensive reports on
theoretical considerations pertinent to stability of parallel shear flows are given, for
example, by Drazin & Howard (1966) and Thorpe (1969a). Scorer (1969, andalso in a
series of preceding papers) shows striking photographs of atmospheric occurrences of
billowing. K-H instabilities may also be responsible for much of the vertical transport of
buoyancy and heat in the ocean. Although the mixing events due to K-H billows are
dictated by the local gradient Richardson number, N2/(dU/dz) 2, not much related field
measurements are available. According to the measurements of Kundu & Beardsley
(1991), in oceans, K-H type instabilities are more common in coastal areas with stronger
currents than in the open ocean where the instabilities mostly occur due to superposition of
internal waves.

Thorpe (1971, 1973) observed that in a two-layer system the Richardson number at
the interface after the evolution of billows is a constant, about 0.33, regardless of the initial
Richardson number; this suggests a self-adjustment of the flow field. On the other hand,
the vertical lengthscales of the mean velocity and density profiles were found to depend on
the Richardson number. Thorpe (1968) reported the development of small-scale secondary
instabilities on the braids that connect adjoining billows: nonetheless, the three dimensional
motions that lead to turbulence are known to start within the billows. The onset of small-
scale irregularities on the wave spirals is first observed when the wave slope assumes
values between 1.2 and 1.4; these instabilities finally tend to develop into turbulence and
mixed regions. The mechanism for such a transition, although not known precisely, is
thought to be due to convective instabilities. Numerical simulations show that most



unstable disturbances are convectively driven and, small-scale rolls in the billows are
oriented in the direction of mean flow. Increase of Prandtl number tends to destabilize the
rolls (Klaassen & Peltier 1985, 1991: for experimental evidence see Thorpe 1985). In a
recent paper, Lawrence et al. (1991) studied the stability of stratified shear flows when the
density interface (of thickness 8) is much thinner than, and is displaced by an amount d
with respect to, the velocity interface (of thickness h). In practice both these scales grow
with time (or with the downstream distance). The difference in h and 8 results in
preferential entrainment of the fluid from one layer to the other. The ratio of h/S is an
important factor in the stability of the flow field. In general, when h/8 - 1, the flow could
be stabilized by choosing a sufficiently larger density step. On the other hand when, h/8
>> 1, such stabilization is not always possible. It was shown that, for h/8 -+ -, and
Re -+- some wave numbers are always unstable irrespective of the value of Ri.

2 Experiments
The experiments were conducted using two different configurations. The first was

an annular closed-circuit water channel and the second was a tilting tank. A schematic
diagram of the water channel is shown in Figure 1; it is a modified version of the Odell &
Kovasznay (1971) apparatus and a disk pump was used to drive the less dense upper fluid
over an almost stagnant heavier salt solution. To minimize mixing between the two layers,
the fluids were physically separated by a thin horizontal sheet of Plexiglas, except over a
test section of aout 100 cm long, over which the experimental data were taken. The top
fluid layer enters the test section following Its passage over the splitter plate, which is an
integral part of Plexiglas separation sheets, The stainless steel splitter plate was 1 mm thick
and has a taper of 20:1 at the trailing edge. The initial Richardson number, Rio -
Abh/AU 2 , based on the buoyancy difference (Ab), the velocity difference (AU) and the
thickness of the velocity interface h, was varied in the range 0.4 to 72.

The tilting tank has dimensions of 0.15 x 0.15 x 4 m. The tank was initially filled
with the heavier (salty) fluid and the lighter fluid was slowly added from the top to avoid
mixing, In experiments where the laser-induced fluorescence (LIF) technique was used,
the bottom heavy salty layer was seeded with Rhodarrine-6G dye, and 200-proof Ethyl
alcohol was added to the top layer to match the refractive indices. The vertical mid plane
along the lo:,aest axis of the tank was illuminated with a vertical sheet of Argon-ion laser (2
W). The experiments were initiated by momentarily tilting the tube from its horizontal
position to a specified inclination. The velocity shear generated at the interface by the
ascending motion of the lighter layer and vice versa leads to the development of a well-
defined series of K-H instabilities, as was reported by Thorpe (1968,1969b, 1971, 1973).
The depths of two fluid layers in the tilting tank were the same and hence the billows are
stationary. A billow, near the center of the tank, where wall and end effects are minimal,
was selected and analyzed in detail.

3 Results
Figure 2 shows a series of (LIF) photographs of a temporally evolving K-H billow

captured using the LIF technique. As seen in the Figure 2a. the initial thickness of the
density interface due to molecular diffusion is thin: and it remains thin during the initial
evolution of the billow. The latter observation suggests that not much mixing occurs at the
interface nor at the braids, and most of the mixing was found to betide at the eye of the
billow. Figure 2b shows the billow at a later time where well-defined spiraling motions
can be seen. Figure 2c depicts the billow just prior to its collapse and Figure 2d shows a
highly turbulent billow during mature stages of the evolution. As a result, the core of the
billow undergoes small-scale mixing. This turbulent mixing activity is further enhanced by



the presence of gravitationally unstable shearing motions during the roll-up. However, the
billows are expected to gain some stability and longevity ty the stabilizing Coriolis forces
that are induced due to the vigorous spin within the "eye". According to a theory proposed
by Gibson & Imberger (1994), maximum dissipation within a billow occurs at the density
interface during the initial growth of instabilities; in general, the interior of the billows are
gravitationally unstable. A different scenario of K-H evolution has been put forward by
Thorpe (1987) and Gregg (1987); accordingly the maximum dissipation occurs in small
viscous-dissipative scales that are present in secondary convective rolls that appear during
the roll-up motion.

The magnitude of the local gradient Richardson number Ri is of prime interest in
Sredicting the K-H billow occurrences, but the problem is to determine over what scales the
i should be measured so that the results are of some practical use. It is clear that, in a

flow field with non-uniform density and velocity profiles, the measured Ri depends on the
lengthscale of measurement, and the largest scale that can be employed with some
consequence is of interest. A noteworthy achievement of the present work is the
measurement of the local gradient Richardson number Ri, via the measurement of the local
velocity shear and the local buoyancy difference at a separation of Az - 0.27 cm. The
measurement locations were well within the region of maximum density and velocity shear
(The experiments by Scotti & Corcos (1972) on a heat-stratified air shear-layer showed that
the minimum local Ri occurs near the center of the shear layer). The results show that the
local Ri tends to change with time as the waves pass by the measurement point. This is due
to the change of the local velocity and density structure in the vicinity of waves. The
properties of the waves are determined by the initial vertical profiles of velocity and density
as well as background disturbances, Continuous changes occurring in local density and
velocity profiles, as well as the secondary instabilities of three-dimensional nature, tend to
change Ri in an irregular manner. In the measurements, Ri was defined as the minimum
absolute averaged Ri over a period of half a second. Such averaging was necessary in
order to eliminate the possibility of having Au - 0, which gives unrealistic data, Since the
time scale of the instability waves is much longer than the averaging time, the results are
expected to give an idea on the local instantaneous values (note that the averaging does not
eclude situations with Ri < 0). Figure 3(a) shows the variation of Ri with time for Rio -
72 and e = d/h - 1.8; here no K-H instabilities were observed, because of the large

magnitudes of Ri. Figure 3(b) shows the variation of Ri with Rio - 10.6, E - 1.2. During
this expariment a recurrent sequence of K-H waves was observed. Note that the magnitude
of the instantaneous local gradient Ri remains low compared to that of the high initial Rio
experiment described in Figure 3(a). Also note that Ri becomes negative, which indicates
overturning motions.

4 Conclusions
The local gradient Richardson number was measured by finite differencing the time

traces of velocity and dens'ty records taken in a stably stratified two-layer shear flow, at a
vertical separation of 0.27 cm. The measurements showed that, at a fixed point. Ri
fluctuates with time as a result of continuous distortions that occur in vertical density and
velocity profiles with the paasage of instability waves. It was found that the averaged Ri
depends on the initial bulk Rio, as was pointed out by Sullivan (1992) and Fernando &
Stephenson (1991). LIF photographs clearly indicate that much of the mixing occurs in the
vicinity of the eye of the billows.
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Figure I Schematic diagram of the closed-c ircuit water channel.
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Figure 2 A series of LIF photographs that show the time evolution of K-H
billows. Figures (a). (b), (c) and (d) represent the state of the billow
after 0.7. 1.9, 3.3 and 3.8 second~s, respectively The densities of the
upper and lower layers are 0.983 gmn/cm - and 1.015 gm/cm 3 .
respectively. The tilt angle is 40.
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Figure 3 Time variation of the local gradient Richardson number.



Three Dimensionalization of the Stratified Mixing Layer
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Abstract

We present a detailed analysis of the processes through which three dimensional motions arise in the
free stratified mixing layer. Previously published Floquet analyses of the governing instabilities, both
for stratified and unstratified flows, have suggested a wide range of mechanisms to be possible
candidates for the origins of the streamwisc vortex streaks that are observed to be precursory to fully
developed turbulent flow, We employ very high resolution LES methods to reveal which of these
candidate mechanisms is dominant.

I: Introduction

The issue of the origin of three dimensional motions in the free mixing layer is clearly central to the
understanding of transition in such flows. Recent reviews of this problem have been presented by Ho
and Huerrc (1984) and Bayly ct al. (1988) for the homogeneous problem and by Thorpe (1987) for
the stratified case. Laboratory investigations by Breidenthal (1981), Bernal and Roshko (1986).
Lasheras et al. (1986) and Lasheras and Choi (1988) have documented, for the unstratified case, the
appearance of "mushroom-shaped" streamwise vortices as being precursory to turbulent collapse.
Metcalfe et al. (1978) performed detailed three dimensional numerical simulations of merging KH
vortices and showed that the initially realized three dimensional motions consisted primarily of such
streamwise 'ribs' of vorticity that appeared to develop in the strained region between the initially two
dimensional large vortices. Metcalfe et al., however, assert that they were unable to determine whether
the streamwise vortex ribs that appeared in their simulations were generated through a flow transition
that originated in the vortex cores or in the braids themselves. This is an important point because
Corcos and Lin (1984) and Lin and Corcos (1984) have attributed the appearance of streamwise vortex
streaks to the so-called translative instability of Pierrehumbert and Widnall (1982) a mode that was
later associated (Pierrehumbcrt 1986; see also Bayly 1986) with a non-scale selective instability (the
elliptical instability) that is supported by any vortex with non-zero clipticity. The analyses to be
presented herein are rather definitive, we believe, in demonstrating that the appearance of streamwise
streaks in the unstratified mixing layer has nothing to do with the elliptical instability but rather is
caused by an instability that is energized locally in the braids that was first documented by Klaassen
and Peltier (1991). These analyses arc therefore discordant with the recent numerical analyses of
Rogers and Moser (1992).

In the case of the considerably more complicated stratified mixing layer problem the
theoretical analyses of Klaassen and Peltier (1985) suggested that streamwisc vortex streaks should
also arise in this case but that they might be expected to originate through a shear aligned convective
instability of the kind first (apparently) analysed by Kelly (1977). The possible importance ol this
dynamical mechanism was first suggested on physical grounds by Peltier et al. (1978) and Davis and
Peltier (1979) later demonstrated that supercritical Rayleigh numbers were in fact delivered by two
dimensional KH billows in super-adiabatic sub-layers within (and especially surrounding) the
overturning vortex cores. The Fioquet analysis of stability presented in Klaassen and Peltier (1985)
and more fully elaborated in Klaassen and Peltier (1991) suggested that the cross-stream scale of the
vortex streaks that would tc generated by this mechanism would be approximately 1 XK11 where %K11

is the wavelength of the two-dimensional Kelvin-Helmholtz wave. Thorpe (1985) subsequently
performed a new sequence of tilted tube experiments in order to search for the shear aligned
convective rolls predicted by the Klaasscn and Peltier analyses, experiments that did in fact reveal
some evidence of the predicted mechanism prior to turbulent collapse. No unambiguous identification



of the observed cross-stream structures with the theoretical prediction was possible, however, so that
in the case of the stratified fre ; mixing layer the current state of understanding is as incomplete as it

is in the unstratified case previously discussed.
In this paper our goal will be to summarize a new sequence of very high resolution numerical

t, periments that we have recently performed in an effort to provide definitive answers to the above
questions. Following a brief review of the Floquet theory and its predictions in the following section.
we will proceed to discuss the new numerical simulations of mixed layer collapse that have been
performed. Our conclusions are presented in the final section of the paper.

2: The linear stability of two dimensional nonlinear dependent flows

It follows from Squire's (1933) theorem that the initial instability of a stratified parallel flow with
horizontal velocity u.(L) and potential temperature (in the compressible case) O(z) will be two
dimensional in most circumstances (e.g. Smyth and Peltier 1990. A typical basic state that is
employed in the investigation of the structures that develop from such instability is:

u. (.x, z; t rio) =u. ta n/ (( z -H/ 2 )1h ) (1a)

0(x,z;t=o) 8 + 0. ranh ( (z-H/2)h) (lb)

A numerical model is typically required to investigate the evolution of the two dimensional time
dependent flows that develop from the initial instability of such a basic state (see we following section
for a brief discussion of the model that we employ), Since the temporal instability has a well defined
streamwise scale determined by the wavelength of the fastest growing mode of linear Instability it is
natural to assume that the flow remains spatially periodic in the streamwise direction as it evolves and
most previous analyses of the maturation of the initially two dimensional linear instability have been
based upon this assumption (e.g. Peltier et al. 1978). Note that this assumption does not preclude
vortex pairing if the numerical domain is taken to be at least two wavelengths long. Although we vill
not discuss vortex merging instabilities here it should be noted that such process are rather well
understood theoretically (Kelly 1967; Klaassen and Peltier 1989; Smyth and Peltier 1992).

Klaassen and Peltier (1985. 1991) show that the issue of the local in time stability of the
evolving nonlinear 2-D Kelvin-Helmholtz wave may be reduced using Galerkin methods to solution
of the following eigensystem:

s a,,= - ax., , + Ri A c (2a)
KIL/

SbA IV- ",5vav" 8V)\ bxv + C'A•

b,, PIA Rk (4 e A (Ab

C"4 I a + ) b (k) A (2c)

in which B% = %a+b, D, = vJt/4, Axv = B4+ D, + d2 and a,. b,, c, are the coefficiencs in the
Galerkin expansions for the siramwise and vertical components of velocity and the potential
temperature respectively. The interaction integrals Q) consist of projections of the non-linear two
dimensional K}I wave fields onto the Galerkin basis. The Reynolds number in the problem is Re =

u, h/v, the Prandtl number is Pr = WKr and the bulk Richardson number is Ri=gh AO/(O° u.2). By
concatenating the Galerkin coefficients a,,, b.0, c.., into a single vector V (say) with a single running
subscript we may clearly r.:-write (2) in standard matrix eigenvalue form as E., V -= s V,

A useful diagnostic procedure for evaluation of the results that are obtained from the solution
of this cigenvaluc problem is to construct an energy budget for the cigensolutions V following Laprisc
and Peltier (1989) as:

2



a <K'> = <Sh> * <St> + <H> - <D> (3) 4'

in which s=a+iwo so that a is the real part of the eigenvaluc (the growth rate of the mode) and (0 is
it's temporal frequency, In (3) ,K'> is the perturbation kinetic energy of the instability averaged over
the domain. <Sh> is the integrated shear production of perturbation KE. <St> is piuduction by
"stretching". <H> is the production through convcctive instability and <D> is the (negative definite)
loss due to viscous dissipation,

For the purposes of the present paper we will first compare solutions of (2) via (3) for 'wo
cvolving Kelvin-Helmholtz waves at comparable times in their life-cycles. The two wave-states will
be those for R, = 0 and Ri = 0,04 respectively and in each case we shall assume PR=I and Re=300
for the purpose of evolving the two dimensional non-linear wave from the initial instability of the
parallel flow. In Figure Ia we show the growth rate a andin Figure lb the wave frequency t1 as a
function of the cross-stream wave number d for the unstratified case with Ri=O at the time of
maximum perturbation kinetic energy in the KH wave. Figure 2 illustrates the main components of
thc budget in (8) for the fastest growing mode of instability denoted by the diamond symbol in Figure
la which occurs at d=l.8. Inspection of Figure 2 demonstrates that this fastest growing mode is
located in the braids of the nonlinear wave. In the more accurate version of this stability analysis for
the unstratified case recently presented by Smyth and Peltier (1994) it is demonstrated that modes on
the low side of the inflection in the curve of highest growth rate are, however, core centred and
"elliptical" (see Smyth and Peltier 1994, Figure 2). Since the growth rate varies slowly as a function
of wavenumber from braid centred to core centred it clearly is an important issue as to which would
be most fully realized in nature and most strongly control transition,

In Figure 3a,b and 4 we show similar data to that for the unstratified case. Inspection of the
results for this example which diffcrs from the unstratified case only in that Ri=0.04 demonstrates that
a profound modification of the fastest growing instability has been introduced by the stratification.
Firstly the wavenumber of the fastest growing mode has been shifted to d=2.6 from d=1,8 while
secondly (Figure 4) the mode has ceased to be braid centred. Rather it has come to be quite strongly
c3nfined into the outermost superadiabatic sublaycr (visible in the <H> field). In this case the fastest
growing elliptical mode is found at the considerably lower cross-stream wavenumber of d=l,
somewhat higher than in the unstratified case where it was found near d=0.7. In what follows we
shall attempt to determine whether and which of these predictions concerning the mechanism of
transition are correct.

3: Large eddy simulations or transition in free shear layers

In support of our experimental and theoretical program on free shear layer transition we have
undertaken the investigation, by numerical means, of the competition between the above described
modal instability mechanisms that could mediate transition. In both the unstratified and stratified cases
there exist braid centred and core centred mechanisms while In the stratified case the shear aligned
convective mechanism may also contribute. Our numerical simulations have been performed with a
model modified from the anelastic model described in Clark (1977) which solves the governing
equations in the Boussinesq approximation as:

V •(U) - 0 (4a)

Du IV2 (4b)-= - -Vp* + kO's, uDt wRe

D = V2 . (4c)
Dt Re Pr

in which the potential temperature deviation is 0' = (0 - 9)/O. The numerical methods employed
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Figure 1. Growth rate a and angular frequency co vs. spanwise (y) wavenumber d for the maximum-
amplitude state of a nonlinear KH wave with bulk Richardson number Ri-O. (For b-0). The symbols
on each a vs. d curve denote the fastest growing mode, and the same symbol is used to label the
corresponsing ca vs. d curve. Note that only the non.negative eigenfrequoncies are shown,

Rt , 0.04

B 3

Figure 2. Eigenfunction correlations depicting the spatial dependence of the kinetic energy and the energy
transfers for the most unstable 4o -node (labelled o in figure 13) of the maximwn-amplltude KHl wave
with Ri = 0. Here t = 26. b = 0, d - 1.8,.a0 0.137. w - 0. <Sb> = (0.145. <St> - 0.012, <H>' - 0,

<>--0.020 in units of <K'>. The shearing conversion SH(x~z) and the stretching conversion St(X.i.)
are given by the inicairands Li equations (3.29).(3.30) respectively, while the perturbation kinetic energy
density K' is given by (3.25). the vertical lines superimposed on the Sh field represcnt the regions of
the nionlinear KP wave where the shearing deformation exceeds 0.43 of its maximum value. This
fraction was chosen so as to reveal the detailed PiUctufe of the deformation field on the wave core, The
dot superimposed on the K' field mark the position of vertical line maxima in the vorticity field. which
mark the location of the braids and the vorticity ridges in the core. The domain length and height are
respect vely 14 and 10 in units oif h). The top right-hand panel shows an overlay of stresinfunction and
potential temperature for the stratified case Ri - 0.04 in order to demonstrate the position of the vorteX
core within the frame.
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Figure 3. As for figure 1, except Ri = 0.04.
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Figure 4, Eigenfunction correlaions for the most unstable w. mode (labelled in figure 3) of the
maximum amplitude KH wave with Ri - 0.04. Here t - 32, b - 0, d - 2.6, c y 0.163, a) - 0. <Sh>
- 0.110, <St> - 0.010, <H> - 0.079. <D> * 0.036 in units of <K'>. The vertical heat flux H (x,?.) is
given by the integrand in (3.31). The superadiabatic region associated with the overtuning fluid in the
vortex core is marked with vertical lines superimposed on the H field. See Figure 2 rot further details.

consist of centred second order accurate finite differences on a staggered mesh for the spatial derivates
while the time stepping is achieved using a leap frog scheme coupled with a Euler backwards step
every 10 •t in order to reduce splitting errors. For the two simulation to be described here wc have
employed 100 grid points in the stieamwise direction. 100 grid points in the vertical direction and 2(X)
grid points in the cross-stream direction. In each case the domain length has been Set equal to 2
wavelengths of the fundamental mode of KH instability (XXH) while the width of the box has been
taken equal to 40 h. Since the wavelength or the fastest growing mode is typically about 14 h this
means that the width of the model in the cross-stream direction is just under 3 k.. The height oi the
model domain has been taken to be equal to 20 h and the shear layer to be centred within the region.
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Figure 5. Total pervirbation kinetic energy (PKE) vs. time (solid line) and cross-strewm component of
PKE vs. time (dashed line) for the three dimensional simulations with Ri = 0.0 and Ri - 0,05,

Figure 5 shows perturbation kinetic energy time series for both the unstratified simulation (a)
and the stratified simulation (b). Both were initialized with a purely modal fluctuation in the along
stream direction and a white noise perturbation of smaller amplitude in the cross-stream direction. The
latter aspect of the initialization procedure is especially important as we did not wish to bias in any
way the cross stream length scales that would develop in the course of transition. Inspection of Figure
5 demonstrates that perturbation kinetic energy grows exponentially initially and at a rate that agrees
quite closely with the predictions of linear stability theory. Eventually wave kinetic energy saturates
leading to the devel,)pment of a slow quasi-periodic nutation thereafter. The cross-strcam component
of the perturbation kinetic energy is shown separately on plates a and b of Figure 5 and inspection
reveals that it decays until after the linear growth phase has ceased, this being an expected
consequence of the lack of a timescale separation between the two dimensional wave and the incipient
instabilities to which it becomes subject. On both plates a and b of this Figure we have marked the
times for which full three dimensional images revealing the spatial structure of the instabilities
controlling transition will be shown. These times have been chosen to be "comparable" in the sense
that <ux2/2> is the same fraction of total perturbation kinetic energy for each.

Figures 6 and 7 respectively show three dimensional grey scale images of streamwise vorticity
for the unstratified and stratified free mixing layers respectively at these model times. In both
simulations complete turbulent collapse occurs within a relatively short period following the
development of the structures shown. Inspection of Figure 6 very clearly demonstrates that the
streamwise vortex streaks that appear as the dominant structures in the unstratified case are braid
centred and possess a cross-stream length scale that is accurately predicted by the results of the
Floquet analysis shown in Figure Ia. Therefore the streamwise streaks are not connected in any way
to the translative instability of Pierrehumben and Widnall (1982) nor, by extension, to the elliptical
instability of Picrrehumben (1986) and Bayly (1986). They develop from the insitu instability
captured in the Floquet analysis.

Similar inspection of Figure 7 shows that the streamwise vortex streaks that develop in the
stratified case have no expression in the braids that lie between distinct vortex cores. Rather they are
confined to a ring around the dominant central vortex as predicted for the shear aligned convective
instability of Peltier et al. (1978), Davis and Peltier (1979) and Klaassen and Peltier (1985, 1991).
That the strearnwisc streaks that appear in the stratified case also have a characteristic length scale that
is shorter than the braid centred mode of the unstratified case is also clear by inspection and
comparison of the two Figures.

6
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Figure 6. Positive (dark) and negative (light) streamwise vorticity aosurfaces with a spanwiae vorticity
isosurface that dilineates the vortex cores for the unstratified simulation with Ri - 0.0.

4: Discussion and conclusions

We have described a sequence of new analyses of transition in the free stratified mixing layer focused
upon the problem of accurately isolating the mechanism responsible for the generation of streamwise
vortex streaks. These analyses have established, rather definitively in our view, that these streamwise
streaks, which are precursory to the onset of fully developed turbulent flow, are not produced by
elliptical instability of the vortex cores. Rather they are caused by an insitu braid centred Instability
when the fluid is instratified and a shear aligned convective instability when the fluid is stratified.
Both of these fundamental mechanisms have been well explained and in fact were originally predicted
by the three dimensional non-separable stability analyses of Klaassen and Peltier (1991). In this paper
we have not addressed the issue of the competition of vortex merging instability mechanisms, which
are essentially two dimensional, with the three dimensional modes upon which we have focused here.
This aspect of transition in the mixing layer will be discussed elsewhere.
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Model Studies of Atmospheric Boundary-Layer Flow over Topography

Peter Taylor, Lucilla Chan, Dapeng Xu and Keith Ayotte

Dept of Earth and Atmospheric Science, York University, North
York, Ontario, Canada, M3J 1P3

Two models of stably stratified, two-dimensional, turbulent
boundary-layer flow over periodic sinusoidal topography are being
developed. One uses a finite-difference numerical scheme and
integrates the time dependent, Reynolds averaged equations of
motion with a specified initial state until a steady-state is
reached. The other obtains a steady state solution directly
using a mixed upectral finite difference approach. This is based
on the MSFD and NLMSFD models of Beljaars et al (1987) and Xu and
Taylor (1992) . Both models are being used with considerable
success to study neutrally stratified flow over topography, and
various levels of turbulence closure can be invoked. Initial
work on stratified boundary-layer flow over topography will be
described.

For neutrally stratified flows, a number of non-linear, finite
difference models of turbulent boundary-layer flow over hills
have been published (e.g Taylor, 1977) while Jackson and Hunt
(1975 - JH) proposed a linear model. This proved very successful
and spawned a number of developments. Among them were the Mixed
Spectral Finite Difference (MSFD) model of Beljaars et al (1987)
and the generalisation by Hunt et al (1988a) . Other authors
developed finite difference models with second order closures.

Inviscid stably stratified flow over topography has been studied
for many years and the theory, at least for small amplitude waves
and especially for constant buoyancy frequency, N, and background
velocity, U0 , are well established for both rotating and non-
rotating frames of reference. For the relatively small scale
topography that we are concerned with here (length scales of
order 1km) rotation effects are secondary, although they may
cause directional shear in the basic flow. There are a number of
models of non-linear, hydrostatic and non-hydrostatic, stationary
and non-stationary mountain waves, with typical horizontal scales
of order 10 to 100 km in the literature. In general however the
treatment of boundary layer turbulence is highly simplified and
the models are often run without surface friction or heat flux.

Hunt et al (1988b) have used developments of the JH model to
study inversion capped and stably stratified flow over low hills.
The outer layer flow is assumed inviscid and approximate,
analytic solutions are obtained for an inner layer. With our



numerical models we hope to allow a more detailed representation 4I
of the effects of turbulence and to enable the study of a broader
range of flows. The distinction between the present work and
most other studies of stratified flow over topography lies in the
representation of turbulent fluxes of heat and momentum. In the
atmospheric flow context, we believe that these will be important
for topography with horizontal scales of order lkm or less.

The NLMSFD model and results for neutrally stratified flows

One of the models that we are working with is a Non-Linear
extension of Beljaars et al's (1989) Mixed Spectral, Finite-
Difference model. Within this NLMSFD model we assume that the
mean flow is steady and that both the Coriolis force and
molecular diffusion are negligible because we are interested in
small scale topography and aerodynamically rough surfaces. For
neutral stratification, the momentum and continuity equations are

Uk 8, - ap 05- (1)

a= lk - (2)

where uppercase U and P express mean velocity and pressure
respectively, lowercase u represents turbulent fluctuations and
the r.verbar indicates an ensemble average. Summation is implied
whenever an index repeats in the same term. The Reynolds stress,
Turbulent Kinetic Energy (TKE), TKE dissipation rate (e) or
turbulence length scale equations and the boundary conditions are
discussed in Xu et al (1994) . Periodic conditions are applied at
the lateral boundaries. The model is 3D and is implemented with
several different turbulence closures including LRR models 1 and
2 (Launder, Reece and Rodi, 1975). In this paper, we shall limit
discussion to 2D results with E-Kz and LRR closures (K - 0.4 is
the von Karman constant) . Details of results with other forms of
closure and 3D results are included in Xu et al (1994).

Figure 1 shows some sample velocity perturbation (AU) results for
flow over 2D and 3D sinusoidal wavy surfaces with maximum slopes
(ak) of 0.157. The surfaces are defined by, z. = -acos kx and
Ze * a coskx cosky, where k - 2w/1 and A is the wavelenth of the
topography. Figure la shows profiles over the summits while
Figure lb shows velocity perturbations as contours in the (x,C)
plane for the 2D case IC - ln((z~z0 )/z ) is a stretched vertical
coordinate]. The upper boundary condition used for these runs
was AU - 0 on z - A. Velocity perturbations, pressure and
surface shear stress perturbations for 3D topography are all

2



slightly lower than for flow over 2D terrain.

In addition to other applications the model can be applied to
problems of boundary-layer parameterization in regional and
global NWP and climate models. Moderately steep topography will
cause an additional pressure drag in a shear flow, even in
neutral stratification. Fig 2 shows form drag results (A, is the
x component of form drag oer unit surface area normalsed by
upstream shear stress, Pu, 0 , and by the square of the hill slope
(ak) 2 ) for modestly sloped topography as a function of A/z0 . Two
dimensional topography clearly produces more drag than three
dimensional topography, We also find that the predicted form
drag coefficients are affected by dimension and by turbulence
closure. In general the discrepancies between models with lower
order closure and higher order closure and between 2D and 3D
results are both of order 100%. Non-linear effects on form drag
are slope dependent, but, at moderate slopes, appear to be rather
weak. The strong dependence of form drag on turbulence closure
indicates that accurate prediction of form drag by numerical
models may prove difficult. This is discussed in more detail in
Xu et al (1994) and Xu and Taylor (1994).

Preliminary Finite Difference M,)del Results for weakly stratified
constant flux layer flows

The finite difference model used is an extension, for stratified
flows and non-orthogonal coordinates, of the one presented by
Gent and Taylor (1976). Equation (1) above is modified to
include buoyancy forces, making the Boussinesq approximation.
The vertical component then becomes,

aW 8.aw . Ow. ^ 1 a-, (a ,-'." (3)

We also solve the thermodynamic equation and buoyancy forces give
rise to terms in the Reynolds stress equations. The turbulent
kinetic energy equation, used in the E-kz model, then becomes,

aE+ aE+1aa 1 -a (4)
j71 ýU P aU aW~ --n 01WP

In addition, for models with a turbulence closure requiring them,
we must modify the mixing and dissipation length scales to
account for stability effects. Within the E-kz model we use

3



4
1 CK(Z+z 0)/Ul + 5(z+z0 )/L) (5)

and
id = (Z+Z0 )/(1 + 4(z+zo ) /L) (6)

The, local, Monin-Obukhov length, L is given by,

L -u* 280 /(XgO,) (7)

where u, - (7/p)1/ 2 and the downward heat flux, -H = pc Oeu,.
Additional adjustments are made to account for the non-orth~gonal
coordinate system (see Taylor, 1977 for detaiis) . The models
have initially been tested for constant flux layers using various
stabilities and surface wave amplitudes with rigid lid upper
boundary conditions. These equations are transformed from the
(x,z) to a stretched, terrain-following (x,C) coordinate system,
where the stretching is performed to reflect the near surface
logarithmic and far surface linear characteristics of the
horizontal velocity profile of a stably stratified constant flux
layer. A staggered grid is imposed on the domain in (x,:) space
and an implicit, forward in time, centered in space, finite-
difference numerical scheme based on the equations of motion is
implemented to find the steady-state solution. Pressures are
treated via the method of artificial compressibility.

In the simplest stratified case the flow is assumed to be driven
by a horizontal shear stress and vertical heat flux applied at
the top of the computational domain and the stable stratification
is described by a real, positive Monin-Obukhov length L
determined from these turbulent fluxes. However this idealised,
constant flux layer approach gives unrealistic temperature
gradients and velocity shears in the upper part of the domain
which trap upwardly propagating waves and severely limit the
range of atmospheric flow situations that can be modelled.

In order to provide realistic, specified initial or undisturbed
profiles of buoyancy frequency, N, and mean velocity, U, as well
as permit steady state, spatially periodic, boundary-generated
wave solutions, we are now introducing artificial source
functions for heat and ';omentum. We justify this on the basis of
a separation between 1/N and the time scale for the evolution of
the boundary layer profiles. The appropriate source functions
Sm, Sh can be found from the equations of motion for horizontal
homogenous flow with the specified velocity and buoyancy
frequency profiles. After specifying U(z) and N(z), the TKE
equation is integrated in time until a steady-state is achieved.
The stress and heat flux can then be computed within the momentum
and heat equations to obtained the source functions Sm and Sh.
Since the near surface flow situation is that of a constant flux
layer, U(z) and the mean potential temperature, 8(z), specified
by N(z), should be near logarithmic as z approaches 0. The
source functions are introduced into our two-dimensional model by
substituting z-z. for z in the terrain-following coordinate
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system. Similarly, the U, 0 and E profiles are used to specify
the initial flow.

The finite-difference model has been tested following the
constant flux layer approach, with S. - Sh - 0. The results point
to the disadvantages of this approach as described earlier. The
model achieved steady-state results only for weak stratification
represented by relatively large Monin-Obukhov lengths. As
expected, the steady-state results for weak stratifications
reveal a total absence of internal gravity waves. The near
surface streamlines and the corresponding Froude numbers are
shown for flow over a sinusoidal hill of amplitude a-250z 0 and
wavelength I a 10000z 0 with L w 5000z 0 in Figure 3. The Froude
numbers are comparable to those at similar heights calculated
from a constant flux layer flow over a flat surface under the
same stratification. Even if the flow is altered so that the
Froude number (F - U/NX) is restricted to less than unity,
internal gravity waves would still be absent since the numerical
solution would be distorted by waves reflected downward from the
rigid lid upper boundary used in these simulations, as indicated
in Fig 4a.

We therefore require upper boundary conditions which would allow
upward propagating waves to radiate out of the computational
domain. In order to adapt the model for use at strong
stratification and to satisfy the Froude number constraint, the
initial velocity profile U(z) is modified using source functions
so that it remains unchanged from the constant flux profile in
the lower portions and asymptotically approaches a constant value
U0 far above, while the temperature profile is essentially the
same as before (see Fig 4b) . As a result of the stable
stratification and reduced shear the flow far above the surface
is now non-turbulent. A wave transmitting upper boundary
conditions can be found by considering the steady-state periodic
solution to the equations of motion in this non-turbulent region,
as in the method proposed by Klemp and Durran (1983) . At
present, a suitable set of upper boundary conditions has been
found, which we are in the process of testing.
It in anticipated that results with specified U and N profiles
will be available in the near future.
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Direct Numerical Simulations and Ex eriments
on a Stably Stratified Turbulent Boundary Layer

I.R. COWAN AND R.E. BRITTER
Department of Engincering, University of Cambridge. Trurnpington Strect,
Cambridge, CB2 IPZ, UK.

Abstract. Direct numerical simulations (DNS) and wind-tunnel experiments have been
undertaken on an incompressible, smooth-walled, low Reynolds number turbulent boundary
layer (Re# < 900) over a flat plate, with injection of fluid through a slot in the upstream end
of the plate. The injection of a mixture of ambient and dense gas served to trip the boundary
layer as well as providing a stable density stratification, A finite difference/volume code with
no turbulence model was used for the simulations, and the number of grid cells employed
(255 x 96 x 96) was found to be adequate to resolve most of the turbulence scales. Experimental
measurements were made in a low-speed wind-tunnel of the velocity and concentration field.
Examined here are the effects of a stable stratification upon the boundary layer entrainment
and upon the large-scale turbulence structure.

Keywords: DNS, experiments, stable density stratification, boundary layer

1 Introduction

A number of studies have been made of stably stratified wall shear flows, with
various methods for introducing the buoyancy into the flow - see Cowan & Britter
(1994) for a summary. A novel technique for the buoyancy injection was suggested by
Britter (1988), and has been investigated by Cowan (1994). This is drawn schematically
in figure 1. The buoyancy was introduced into the flow at the start of the turbulent
boundary layer -- a mixture of ambient and dense gas was injected through a slot
in the wall, just downstream of a boundary layer trip. The injection served to mix
the source fluid throughout the boundary layer, so that, a stratified boundary layer
developed downstream.

________Ri•, i---•a

q,

Figure 1: Schematic of the injection of buoyancy into the btoumnary layer flow.

This model flow has two main advantages over previous stii(lies: firstly. the stratifi-
cation effects can be parameterised by a bulk Richardson number, Rib, dependent only
upon the source conditions: secondly, the buoyancy and the boundary layer develop
downstream under the same turbuience scales, in contrast to the situation of a dense
plume growing inside a boundary layer. The bulk Richardson number is defined in
figure I. where q, is the 'volume flow rate per unit span of injected (source) fluid. p thle
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fluid density, g, = g(p, - po)/po the reduced gravity and (.• the free-stream velocity.

The practic olevance of this study is in meteorology and industrial hazard assess-
ment, where redu. -d turbulence levels can have a significant effect on the atmospheric
conditions, and upon the rate of dilution of a conventional pollutant or accidental
release.

2 The computational code
The finite volume code used for the simulations was a modified version of that used

by Voke & .avrilakis (1993). and integrated the instantaneous, Roussinesq equations
for momentum and concentration (see Cowan, 199.1, for further details):

all, 8+ 'J = I Op + 2U*0-" O'i poO~r ,O~-• - oP-qi
0 2 OC.

9 (pC') + a(p W11)0 d (\p

Top4-

- • .... Outflow

Slot V' ction

Figure 2: Simulationl domain.

This paper uses the notation U = U + ii, where the bar dlenotes a time-average, for thw
lReynolds decomposition of quantities.

Sonle of the bo, ndary conditions on the simulation domain (see figure 2) wer,: a
Blasius laminar velocity profile at inflow; a periodic boundary on the side walls (ho-
mogenrity assumed in the spanwise direction): a fixed vertical velocity distrilbution on
the top wall (to ensure a constant free-stream velocity, VI ,.); the "advectivv" IboundaY'
condition of (ao rt al. (1991) at out flow. A turbulent boundary layer was formed from
the laminar inflow profile using a numerical "trip", aided by the slot injection. An
intjection velocity of 0.05 msq or 5% (11.0 was used for all the simulations. The slot
position (measured from the inflow plane, x = 0) was xr = 0.71 : 0.80m.

A stretched vertical mesh was employed, giving improved resolution near the wall,
whilst the spaluwise and longitildinal nimshes were itniiform. The domain size was
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(:.Oin,.0.3m, .3mn), with (2,55, 96,96) gridrells in the (.r, y, :) directions, giving mnesh
resolutions of (:39(+, I Ot+-3Qr+, 1Wl(), where f+ = 1111. is on1C Viscous Unit,. Profiles
of meani velocity rtc. were taken at a distance of xr, = 2.59l12 downst~ream of the inl-
flow planle. T'able I lists tile Reynolds numbers, based upon momnentum thickness, at
this pogition (Re#) aind the bulkl Richardson numbers (Ri,,) for the three simulations,
performed. The runis each required 210Mb of memory, and were performed on lthe
Crayv YMPS at. the Rutherford Appleton Lalboratorieq, 11N. Full resolution of fill the
tutrbulent. Scales provedl not. t~o be possible with tile available reqsources, aind thle mlinor
effects t his had onl the velocity field are discuissed in Cowan (199,1).

LADE!. Rib flea)

M~n T 0 870
Mea 0.025 800
R3S 0.0315 7N0

Table 1; Simula tion details.

3 Simulation data
A stable stratificaltion generally damps vertical motions since these require work

against, gravity. Trhese vertical mnotions, however. tire highly important to thle entrain-
mient andl mixing of the( boundary layer, and bot-h these asp~ectsM will be shiowni to have
been significantly aiffected by stability in this study. A full consideration of all Ihe
simulation~ data is not. possible here-, aind so focusm i.s restricted to this one ampect, of tiw
effect of stability.

Figures 3a and 31) plot. two boundlary layer integral parameters againist downstream
dlist ance: thn'skin friction Coefficient, (.1 = r,./1~PU( r2 , and thle "ePntrainmnent" thIiickness.

= d - 6% which is defined as the difference b~etween tli(, boundary layer thicknevss'.
c6. andl the displacement thickness, 6* = fo" ( I - 1't >)dy. Al entra~inmient velocity.
representing the rate of increase of volumne flow rate in th li lounclary layer. canl bV
derived as: o/~ 1/r

Rleduct ions in the downst ream growth rate of thle entrainmniit thickness (figure 31 ))
demonstrate that entrainmient of tree-streami fluid into ili lie oundary layer is inibI-
ited b)y stable st~ratificationi (ui,/f., is reoluced), and suggest that large-sca'- turbulent.
mixing is suppressed. This reduces thle abilit% of te lie ollncl.iry lit'yer to tranisport nuo0-
inentum fromt the free-streami to thei wall region, causing a redmuct ion iln mean v'eloci tY
s9hear at thle wall. and thus inl r, (figutre 3a).

Figure 3c plots; thle downstream development, of tilie mlaxiuinlil mleanl concent rat ion
of the(' injected flulid. (*X,,, nornmahised 1In the source conce'nt~rat~ion, C'i. Note that. for
this type of flow, C",, Occursl~ at tile wall: ('"I (' , (0( CII =(). A\ft~er tile inlitial
mlixing Mdu( 1-fipitl dillit ion 1teAr tilie so'tr-ce (.1 1.5). 11In, ratesý of derreas-v tillm/
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Figure .1: Integral parameters: (a) skin friction coefficient., "'i; (b) entrainment thick-
ness, 6,; (c) normalise~d ground level concentration, CmC:(d) concentration thickness,
h, Key: Rin(-); R2s( - - -); R3S( ...

become small and thus difficult to compare. Figure 3d improves on this by plotting
the "concentration thickness", defined as h C=Sq/C,1 ,f.,. Concentration profiles
are roughly similar, hence the downstream decrease in (',M is due to entrainment of
ambient. free-stream fluid into the boundary layer, The observed large reductions in
dh/dr thus imply large reductions in the entrainment for the stable cases,

These changes in the integial parameters are symptoms of changes in the turbul-
lence structure, This is evident in figure 4, which plots profiles of the vertical turbulent
intensity and the turbulent, shear stress: both are significantly reduced by stable strat-
ification. Vertical fluxes of concentration. T7•, are similarly affected.

The suppression of turbulent shear stress may be linked to the inhibition of large-
scale vertical motions. since most of the shear stress production arises from the near-
wall bursting process - afi event that is associated with large vertical ejections of
fluid from the near-wall region. Reductions in the shear stress cause a decrease in the
turbulent kinetic energy. and lead to a relaminarisation of the boundary layer at high
levels of stratification. An analysis of the terms in the shear stress and the kinetic
energy budgets found that this collapse in turbulence energy was dne to an inability
to maintain a shear stress, rather than due to an inability to qupply (potential) energy
to the buoyancy sink term in the kinetic energy budget. This is in agreement with tile
llypothesis of Arya (1975).
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Figure 4: Simulation data. (a) vertical turbulent. intensity, t/1.•.: (b) trurbulent shear
stress, -Ki/U•. Key: Rln(-); R2s(- - -); R3S(...

4 Experimental data
Flow visualisation was undertaken initially, injecting smoke into the boundary layer

and using a laser sheet to illuminate either a longitudinal or a spanwise slice of the
flow (see Cowan, 1994). For neutral conditions, this denlonstrated the high degree of
intermittency in the outer part of the boundary layer, and confirmed the presence of
large-scale vertical motions. The effects of stability upon these motions and upon the
turbulence levels were obvious and in accordance with the comments of the previous
section.

Experimental velocity and concentration data were taken with a single hot-wire
anemometer and a flame-ionising detector (FID). The hot-wire was run at high tern-
perature, rendering it insensitive to fluctuations in the concentration of the secondary
gas, carbon dioxide (after McQuaid k Wright. 1973). Trace quantities of propane weie
pre-mixed with tile injected source fluid, allowing the FP1) to indirectly measure the
source fluid concentration.

The experimental data was broadly in agreement with the extensive results from
the siniulations (see Cowan, 1994). Hence, instead of repeating the above analysis.
we present here time series of instantaneous concentration at three positions in the
boundary layer, for neutrally and stably stratified cases - figure 5. These are similar to
those recorded Iby Stretch (1986), and demonstrate the large changes in the probability
distribution of the concentration with height in the boundary layer (see figure 6). Note
that this data can also he extracted from the DNS simulations.

Consider the neutral data first: it. is interesting to note that. the maximurn install-
taneous concentration is roughly constant throughout.t lie boundary layer, at a value
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Figure 5: Time series of experimentally recorded instantaneous concentration, neutrally
(a.c,e) and stably (bdf) stratified, Heights in the boundary layer: (a.b) - y//b
1.0; (c.d) - y/6 -_ 0.6; (e.f) - yj/6 : 0.05.

of C., (where Cm is the local maximum mean, and occurs at groundl.level). The signal
C(t) becomes increasingly intermittent with distance from the wall, so that, the proba-
bility density function (p.d.f.) becomes less Gaussian in shape - at !1/6 = 0.6 (figure
6c). the p.d.f. has a second peak at C = 0. At the boundary layer edge. the p.d.f. is
near exponential in shape with a laige peak at C - 0, reflecting the high intermittency
of the signal.

For the stable data, two observations may hb made: firstly, tLe maximum instan-
taneous concentrations are attenuated away from the wall; secondly, the intermittency
is less pronounced, These effects cause the concentration p.d.f. to be less skewed and
more Gaussian throughout most of the boundary layer. This is most noticeatble when
figures 5c k- 5d and 6c &S 6d are compared. Near the boundary layer edge, however.
the signal remains intermittent as expected.

An explanation for the changes in the concentration p.d.f. may he gained by assum-
ing that the inherent intermittent nature of the nrutral C(t) data is due to large-scale
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Figure 6: Probability density functions, P.. of experimentally recorded instanianreotis
concentration, neutrally (axce) and stably (h,df) st ratified, i~eights in ted .)oundary
layer: (a,b) - ./ý - 1.0; (c,d) - ?116 z. , 0.6; (e.f) yj/b k 0.05.

verlical motions, so that. 1vhe I'lI) probe samples either entrained free-streani fluid
(C = 0) or rising fluid from the near-wall region (C • ( '.,). Small-scale mixing will
give intermediate values of C, smearing the p.d.f. peaks al = 0 and C = (',.. How-
ever, the time-scale of the large-scle motions is a mssued short enough for these effects
to be generally secondary in importance. This seems to be s.l)shtantiatedl by the flow
visualisation.

As we have seen from the. previous section, a stabhl strati fiat ion suppresses large-"scal, vertical motions, so that. in the middle of the boundary layer rising fluid parcels

will not,.. in general. have come from the near-wall region. but. from somewhere more
local. The increased importance of small-scale mixing means that these parcels will
hiave hiad time to mix locally. thus decreasing, on the whole. their concentration. This
leads t.o a better mixed, more (;aussian concentration field, with less int.ermiitency
over most, of thc boundary layer, in agreement with measured stratiield data.
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5 Conclusions

A stably stratified turbulent boundary layer has been sludied, using DNS and wind-
tunnel experiments. Significantl chlange.% were observed in the entrainlment into tile

boundary layer, and in the profiles of the vertical tiurbulent intensity and tile turbulent
shear stress. This was attributed to a suppression of large-scale vertical motions by
the stable stratification.

Time series of instantaneous concentration were analysed, and remarks made on the
variations in the concentration p.d.f. with both position in the houndary layer the level
of stratification. These changer were also linked with the suppression of large-scale
vertical motions.

We are grateful to Dr, Peter Voke for his help in setting up the simulations. and to
Cambustion Ltd, for loan of the FID equipment.
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Wijesekera and Dillon (1991) hypothesized that internal
gravity waves could be generated just below the upper ocean mixed
layer as a result of convective plumes in the mixed layer.
Furthermore they demonstrated that these waves could propagate
downward and generate the secondary mixing events that are seen
in the equatorial thermocline. We have designed a series of Large
Eddy Simulations to test this hypothesis.

The domain for the Large Eddy Simulations consists of a
surface turbulent boundary layer overlying a stably stratified
region in the upper ocean. The boundary layer is forced by
surface cooling with no wind stress. The surface cooling has a
maximum value of 500 W/m2 and the form of a double Gaussian with
a half width of 27 m in the x direction and is uniform in the y
direction. We impose a large-scale mean horizontal velocity field
in the ocean by continually nudging the velocity field toward a
prescribed vertical profile. The velocity profile varies in the
vertical and allows for the possibility of critical layer
absorption of the downward propagating gravity waves. The Cor-
iolis force is set to zero to simulate equatorial conditions.

The model domain is 200 meters square in the horizontal and
100 meters deep. The numerical grid consists of 753 points with
uniform spacing. The incompressible, Navier-Stokes equations are
solved spectrally in the horizontal and a finite difference
scheme is employed in the vertical. The diffusivity is variable
and depends on the magnitude of the subgrid scale energy. A
prognostic equation is solved for the subgrid scale energy. The
horizontal boundary conditions are periodic. The vertical bound-
ary conditions at the top of the model domain are the imposed
fluxes of heat and momentum, at the bottom the boundary condi-
tions radiate gravity waves out of the domain. The code is based
on the atmospheric Large Eddy Simulation code of Moeng (1984).

The imposed surface cooling generates convection in the
initially isothermal surface layer significantly increasing the

1I



level of resolved scale turbulent kinetic energy. The energy is
distributed among the normal Reynolds stresses as predicted by
theory, the vertical component is the largest and the maximum
value occurs at about mid-depth in the turbulent layer. The
turbulent boundary layer deepens with time. The frequency spectra
of the resolved scale fields have approximate -5/3 slopes in the
boundary layer.

Below the boundary layer the results display a high fre-
quency internal gravity wave field in the stratified region only
when the mean shear is imposed on the flow. The wavelengths in
the direction of mean shear are approximately 2-3 times larger
than the wavelengths in the direction of no mean shear. The
frequency spectra of the resolved scale fields peak near the
buoyancy frequency in the stratified layer. There is a maximum in
the resolved scale turbulent kinetic energy at the critical
layer.

The resolved scale kinetic energy budget, heat-flux budget,
and coherence and phase relations are calculated directly from
the model data and will be used to further describe the physics
of the wave field and the turbulent boundary layer.
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TURBULENT WAKES IN STRATIFIED FLUIDS: RESULTS
OF NUMERICAL EXPERIMENTS

Cherilykii G.G., Moshikin N.P., Voropkyeva O.F.
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A hierarthy of serond-order serni-ernpirkcal models of turbulence including modified
f, - (models and the model with differential equations of transformation of a set of
Reynolds stresses was used for the numierical simulation of turbulent wakes behind
axisynmmetrical bodies and generated by the waketi of interual waves Inl stratified
fluids. In order to simulate above flow the three-dimensional paraholized systems
of equations were used. 'rhe otmployed finite-differo'nce algorithms are based on the'
method of splitting into physical processes and space variables, T[he numerical mtod-
cis of the far turbulent wakes were based on the assumption of indepenidence wave
inotions and diffusion processes under large decay time, The agreement betweeni
the calculated ch arac teris tics of turbulent wakes and well-known experimental data
obtained by Lini and Pao is sufficiently good. Sutnplifind models of flow have beeit
constructed. The calculation results for turbulent wake clharacteristic~s and internid
waves generated by It in pycnorlinie are presented.

TIurbulent wakes behind the axisyttime~trical bodies in stratified fluids have beenk stud-
ied by several authors (for details see re~ferenices). Shooley and Stewart [1] ('xperimnieltally
analyzed thv turbulent wake behind a self-propelled body and demonstrated its vollapse
11nd( wake-generated internal waves, The collapse of the- momentluminlss wake it Ii nearl '%
stratified miedia was investigated by Merritt [2], Lini and Pao carried out a detailed study
of turbulence characteristics in turbulent wakes behind the bodies moving ill a linearly
stratified media [3,41. Experittnental analysis of internal waves generated by budies Moving
inl stratified fluids was performed by Gilreath and Brandt [5]. They also presented their
thevoretical estimtates of internal waves including a case' of the wake collapse inl pycniocline.
A series of.studies carried out, lat~e [6-10] wast coic(-erned with the Hlow gvenurated by a sphert'
moving inl the stratified fluid. Diffvrent flow regimies have been studied versus Hte ytolds
andl Iroude' numbers inl both near and far wakes. Honneton, ( homnia and I IopfingvIt 101(1
experimentally and theoretically studied internal waves generated by a sphe're mnoving~ inl
linearly stratified fluidl in great. detail. The wake wave comiponent was cotnside're'd as.
'sociated wi tht coherent wake st-ructures. Voiisin [I;, carried out detailed atnalYsis of the'
vxerX)'iilental (et a ott turbulent wakess devaY inl stratified fluids and theoret~icallY t-stintated
the' intternal wave's paramneters.

Onufriev [121 theoretically, studied the initial stage of the wake developmient.. D~onaldh-
Soil, Lewd, len and Tleske' [1:1] numerically muodt-lled a turbulent wake behind a self-propehle'd
body iii a linearly stratified medium andc the wake of collapse-getwrated intevrnal wavvs.
II assid [4] immuterically simulated the dynamics of turbulenti wakes behin~d self-propelled
hiud tuwed bodies. The ob~tainted data oti the changes inl the' chuaracterist ic Nizes of thte
wake's andc chatnges in velocity defect, and turbulence energy ott thme wake axis versus the
1161-t1t1i( I'rom1 the'- bodly proved to be iii good agreelutent with the Li n's and bVao':, vxpvt
imnteital (tuu a. lDnnile-nko and Tul'ot~vkhu [1,'11 have' consideredl the' turbutletit waki, liehitic nt



self-propelled body &s an~ examnple of the application of the stratified flows coniputationi
method. The construction of simplified mathematical models of the far turbulent. wakes
(and iuternal waves genrte(F~(d by it) behind the body in a linearly stratified fluid was
dliscussed in [15).

Our analysis of the' results obtained by the known to us researchers of the numerical
modelling Cof turbulent wakes in stratified fluid. allowed us to conclude that the numerical
models are not qufficiently complete. In particular, there are no numerical miodelling
results onl anisotropic decay of tie intensities of turbulent fluctuations of tht, vertical and
horizontal velocity components in a far momentuniless turbulent wake in linearly stratified
inedium experimentnlly obtained in (3]. We attempted to fill those gaps in this problem.

I-Basic equations. In order to describe the flow in the far turbulent, wake behind
anl axisymnitnotric body in a stratified medium we wse~d thie following systern of averaged
eqlal ionls of motion, continuity and invlomnpressi bility (in Boussi nesqf approach)

1-7 + I"' + W4 Oi + -(u'w'), ( I

OV 01' OV 0. WY~)_

11L Vl wo IdP)- (v9 2  
0 ~ (VIU) (2)

10 II' 014+v2f+" T"OW I O!pi) -a H00" - gPI (3)
dir OY 0: POd a- NY~') 0

ov t~w ali

,~ + 11
0 pi*, + yO(i + 14T) p -'7 ~' = -a(wp),

In equations 1I)-(5) (it 1 1o - 11 stands for the defect of the averaged streamwise velocit *N
romponlent; 11% , K,~ designate the velocity complonents of the averaged motion alonig the
axes J., y. z: 1), is the pressure deviation from the hydrostatic state due to thle stratificationl
p (z:); Ul4 is tfie velocity of thle incident nonperturbed flow; y is the acceleration du it)
gravity, (pl) is the averaged density defect p, = p - p~p, P= p.(:) is1 thel denIsity) 0of
unperturbed fluid; Po p&(O); primed symbols denote the fluctuating (omponemt& ( )is
thme averaging sign. The flow le~nsity is assume~d a linear function of the temperature:
stratilication is assumed to be weak ankd stable, In the right-hand sides of Eqs. (I-
(1) t1 i terms containing the derivative with respect to xr have beeti omiitted u midem the
assumiption of their smallness as well as co-factors in the formi of the coeflicic'ilt. of the
lamninar viscosity or diffusion,

TIhe .4y steml of equations (1 )-( 5) is non-closed. here :3 closed mathematical itudelM of
flow are con 1sidered. In thme first of them (Model 1) in addition to equations (1I)- (5) t he
11quatiomi of turbulevnre energy c balance are invoked as well as thle equation of rate of
enevrgy dissi patiuii into heat, The values of the tensor components of Reynolds stresses

( m')and t.1w vector of densit flyfuxes~ (aup') were determined making use, of mdw model
of locallY-ec 1iil ibriumn atpproxiinat ion sinuilar to that employed 14). In Model 2 the tenisor
(oinIlwielihs of R~eyniolds stresses Were, found by.ý employing approximatioils [1(;]

23 + 1 2i 6i i3 1 + C:I) (G.) - 2h ;]



v.,~U j gi = - # (u .',p'), P = P ,,/2, G G j,/2,

C(2 0.6, ("3 = 0.3, 9, = (0, 0. - ).

Thc tompon,.nis of the vector (uip') were sought in the same way as in Model 1 InI Model
3 the followinig approximations were employed for the values (u0,'), (u'u')

(u'i.') = ,('"•" -~ , (u't') = C '-"a C, = 0.25. (7)

The quantities \u'2), (I'2), (w'2), (W'w') were determined by solving I he corresponding
dilffrenitd I transport equations [17, 161. '[he values F and E in Models 2.3 were obtained
froi n the equations similar to those of Model 3 allowing for (6), (7). In all the mod-
els theO (uantitv (p' 2ý) was obtained from the algebraic relation of the local-equilibrium
appllroximation

0p'2 ) W-- -•(wp') 2 -, (."T = 1.25. (8)

2.Statement the problem. Numerical algorithms. Marching variable Xr in the
considered problem plays the rob of time. Initial conditions for the Models 1,2 at some
X .rX wMrV assigned in accordance with experimental data of Lin and Pao 13.41 similar to
,hose take,, in (4). As for Model 3, it was applied only for the calculation of inomentuniless
wake characteristics and as initial data it employed self-similar solution corresponding
to the homogeneous fluid and in agreement with experimental data [3). For the sake
of sVmmnet ry, the problem solution was sought only in the first quadrant of the planle
V x Z with the corresponding symmetry conditions laid down on coordinate axes. The
problem !;olution was sought in the sufficiently large rectangular area 0 < y < Y0 <
- < Z. At thIv boundaries of the rectangular y = V- = Z laid down zero botndary
,otiditiotn of the value of velocity and deiisity defects, turbulence energy, dissipation
and tensor cOnl)onents of Reynolds stresses. Variables of the problem ran be rendered
,hininsionless on making use of the length scale D i.e. body dianmt, r and the scale l.(
i the velocity of unperturbed flow. Let us also introduce (,al) = (pt;/taDpo. As a
rf-!, . in equtat.ionls retidered dimenisionless q will be subs' ittited by tlh,- quantity ,1r/Fr"
whete Pr = Ft) = UOT/D is th,- density Froude niumber, T = 21r/l .,- is VAisla-rBruw
perimt. a = -(I/pn)dp.,/d. if z = 0. In nurmerical nl!.%,lefling of the flow in the wake
tw, finite difference algorithms were employed. Algorithm I is based oti explicit splitting
inlto spare variables for the equations (1), (4) and other similar equations and on the
application of an implicit splitting into physical processes to the system of equations (2),
(;I). (5). The calculations showed the possibility to tise a two-dimensional analogue of
incmpiprvssilbility equation (5) with the zero right-hand side. It, this case, the sitiratri
function i,, can be introduced and the vorticity ,.. The cal ulation algorithm using these
variables (algoritlInn 2) is based on the, methods of splitting into space variables, The
"trivanlli function wsas obtained through the solution of the respe'tive Poisson ('qpiatiol bY
lieahs of an iterative scheme of stabilizing corrections, Both uniform andtt non-uniforti
grids were e'nployed condensing towards the origin oh coordinates. The algorithinis were
test 1) by calc'ulations on a sequence of grids,

3.Calculation results. Figs. 1-3 show the Model I calculation results vvrsus experi-
ivit.al data obtained by Lin and Pao on the drag wake. The agreenitit with experi'ilietit ill
dtala and Hassd's calculation results [.41 can he ,oisidered satisfactory. Fig. ,1 shows tihl,



lines (pt)/aDpo = corisl for the time value 1/7" = x/li(JT = 1.5. The lines are represented
by the following levels I - -.38 -10', 2 - -.25.10-1, 3 - 0.0, 4 - .21.10-1, 5 - .90.-1V-. 6
.50-101-1. The data of numerically modelled decay of the unomentumless wake in linearly
Atratified nediurm are showi, on Figs. 5-13. Calculation results on Fig. 5 are in sufficient 1Y
good agreement with experimental data. The better agreement can be achieved making
use of Model 2. Fig, 7 shows the time variation of the values of total turbulence energy
F and the wave energy in the wake P (Fr = 120, Model 3)

L," •d),.• • l2 Vi'' 27r' 2

= j Ji~i~s~. t = jj •- - + 1TT,- )d. i = ./U0, • = !/l, . = z/l).
{10 0 0

It is clear that as the total turbulence energy monotonously decreases, the quantity /'(/7T)
becorne actually constant at t/7' > 1.5. Such behaviour of E, I is the evidence of
independence, as in the problem of dynamics of the turbulent fluid region [18], diffusion
and wave processes. Ill this conniection, in order to calculate the characteristics of the
turbulent wake itself diffusion model can be uscd where V = W = 0, g - 0. The internal
waves can be calculated by Euler equations. Making use of diffusion m, del significantly
reduces the size of the grid region. In the case of pycnocline the simp,ified models call
be employed at large I values. The numerically modelled turbulent wake characteristics
for value Fp = 120 are compared with laboratory results obtained by Liii and Pao [3] on
Figs. 8-12. Model 3 yields the satisfactory agreement of fluctuations intensities dynamics
of the horizontal and vertical components. In Models 1,2 these values were obtained front
the respective algebraic representations. It is, possible that the deviations at tiT > 5
on Figs. 10.11 are caused by non-universal initial mathematical models with respect It
turbulent numbers Rc and Pc.

The dynamics of the turbulent wake in the fluid with tion-linear distribution p,(.: =
p,- ai tanh /d, i3, 0.3 is illustrated by Figs. 13 - 15. Figs. 13 - ,1 show the stream
function lines a/,/l1iD = ronst for t/7 = 1,3 represented by the following levels I -

-.4836.10-, 2- +.1251.10-. 3 - +.255110-, 4 - +.3851.10-1 , 5 - +.5151.10-:, 6
+.6451-10- 3 , 7 - +.7751.10--, 8 - -. 9050-10-3. 9 - +.1035.10-, 10 - 0.0. Fig. IS shows

the lines of equal energy e/r(l, 0, 0) = const characterized by the following levels: I - 0.01,
2 0.01. 3 0.2. .1 - 0.3..5 - 0., 6 - 0.U5, 7 - 0.6, 8 - 0.7, 9 - 0.8, 10 - 0.9. Fig. 16-17
for the sake of comparison show the stream function lines distributions and turbulence
energy for linear stratification with the same levels as Figs. 13-15. It can be seen thai
both the towed and self-propel led hody the behaviour of internal waves in linear stratified
fluid is in qualitative agreement with the behaviour of internal waves generated by local
perturbation of the density field in stratified medium [19].

Therefore. the developed numerical models provide the satisfactory description of tur
bulent. wakes dyvanuics ill stu-atifled iledium. Turbulent diffusion processes are fairly
iif.i'uestiiig for the investigations (if stratified flows. The experiimental data of Lin, andl
Imo call be considered a good test. of mathenmatical models.

This stldv has beei, supported hy the Russian Founidation of Fundamental Studies.
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Modelling deep ocean convection events

by G. N. IVEY, M. J. COATES and J. R. TAYLORt

Department of Environmental Engineering
Centre for Water Research

University of Western Australia
Nedlands, Western Australia

Abstract
To model deep convective processes in a stratified ocean, a laboratory experiment was

constructed in which, for convenience, the problem was inverted and a convective mixed
layer generated by a localised source of bottom heating in a rotating, thermally stratified
fluid. Following the initiation of the heating, a column of heated and well-mixed fluid
forms over the heated plate and steadily erodes the overlying ambient stratification. Ro-
tation initially confines the heated fluid above the central plate but, as time progresses,
the front separating the well-mixed heated fluid and the surrounding ambient stratified
fluid becomes unstable, eventually generating a field of baroclihic vortices. While the
heat transport process is complex, temperature and velocity measurements are used to
describe the evolution of the flow field, and tile development of the flow instabilities and
heat trunsport.

1. Introduction

The mechanisms of deep water formation are a subject of considerable interest due to
their important role in affecting deep ocean overturning rates and residence times, the
oceanic heat transport and the rate of oceanic uptake of CO (e.g. Maier-Reimer et al.
1993). The formation of deep water occurs primarily in a few high latitude locations
(e.g. Gascard 1991) in which intenbe locr.lized surface cooling generates fluid which is
sufficiently detse to penetrite the underlying stable density stratification associated with
the seasonal thermochne. Early work on deep convection has been reviewed by Killworth
(1983), and more recently field studies in locations such as the Greenland Sea (e.g. Schott
et al. 1993a) and the Golfe du Lion (e.g. Schott and Leamann 1991) have reported direct
observations of deep ocean convection events. Such observation! are difficult to make,
however, and the available data remain sparse.

Recently Jones and Marshall (1993) have used a nonbydrostatic numerical model to
study deep convection in a homogeneous ocean. In general, their numerical experiments
supported the concurrent laboratory studies of Maxworthy and Narimousa (1994) in ho-
mogeneous fluids in showing the formation of a series of rotationally controlled plumes
within the convective chimney which eventually go baroclinically unstable. Maxworthy
and Narimousa (1994) extended the earlier work of Fernando et al. (1991) by exam-
ining the dynamics of convection in a rotating homogeneous fluid when the source of
de-stabilizing buoyancy was applied over a finite circular portion of the un ,er horizontal
boundary in a circular tank with salt as the de-stratifying medium. They confirmed the
observations of Fernando et al. (1991) on the transition depth h, when the flow field made
a transition from fully 3D turbulence close to the source to a rotationally controlled turbu-
lence field where quasi-2D vortex structures formed and characterised the flow for greater
distances from the source of buoyancy. In applying their results to the field observations.
Maxworthy and Narimousa (1994) noted that the transition depth h, was usually large
compared to the depth at which convective motions have been observed and, indeed, often

t Current address: Department of Physics, Australian Defence Force Academy. Unli-
versity of N.S.W., Canberra, Australian Capital Territory.
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large when compared to the depth of the ocean. The implication for the homogeneous
case is that rotation may more directly affect the outflow of convectively mixed fluid from
a convection event rather than directly affect the small scale 3D turbulence itself.

Given these observations, we have designed an experimental program in which tile
experiments are conducted in a parameter range where rotation affects but does not
control the turbulence (see. below) and, given that field observations indicate that a stable
background density stratification is typically present (e.g. Gascard 1991), our experiments
focus on the case of a stably stratified environment.

2. Experiments

the experiments were conducted in a Im diameter by 0.5m deep circular perspex tank,
double walled to reduce the heat losses. The outer wall was octagonal to allow undistorted
horizontal views through the inner circular sidewall of the tank. To model the surface
cooling observed in the field, we heat from below in the laboratory accomplished by
centrally mounting on the base of the circular cavity a 0.4m diameter copper plate which
formed the upper surface of a heat exchanger. Thus the plate could be heated from below
by pumping hot fluid through the heat exchanger. Measurements of the flow rates and
temperature drop of the heat exchanger fluid allowed the heat flux into the working fluid
to be determined. A false bottom in the tank could also be rotated to simulate the effect
of pre-conditioning of the stratification. The entire assembly was mounted on a rotating
turntable revolving at a constant rate.

The temperature changes induced by the heating were measured with a rack of six fast
response thermistors which could be vertically traversed, enabling vertical temperature
profiles to be obtained at a 1mm resolution. The thermistors were fixed in the rack at
the six different radii of 0, 0.1, 0.15, 0.2, 0.3, and 0.4 m.

The velocity fields were obtained by the use of particle image velocimetry (PIV) am
implemented by Stevens and Coates (1994). Here, the flow was seeded with finely ground
Pliolite particles, and the tank was illuminated by a horizontal laser light sheet. Krom a
laser mounted external to the rotating table, the light beam was passed through an optical
slip ring and onto a pair of orthogonal X-Y scanning mirrors mounted at the edge of the
rotating table, The sheet produced by the scanning mirrors was collimated by a Fresnel
lens and deflected into the tank by a large 45* mirror. The scanning mirrors allowed the
sheet to be located at any depth and for these experiments the horizontal 5mm thick light
sheet was regularly traversed through the mixed layer. The experiments were recorded
from a CCD camera onto video tape, and from this recording image pairs were extracted
at the times for which velocities were required. The velocities were then determined by
a cross correlation between the two images of the pair obtained a short time At apart,
typically At = 0.32s. The necessity of being able to resolve the Pliolite particles limited
the field of view of the CCD camera to approximately 210rmm x 300mm.

3. Description of the experiments

We focus here on three runs, summarized in table 1, covering a range of buoyancy fluxes
B and rotation rates f = 47r/T, where T is the rotational period. All experiments had
similar initial linear stratifications. We describe a typical run (run 48) to demonstrate
the sequence of events which occurs following the initiation of the buoyancy flux.

Table 1: A iurnmary of the experimental runs. The symbols are defined in the text.

Runx f T B N A¢ LR AILI

(rads'-) (s) (m 2s- 3 ) (W- ) (in) (m)

42 0.42 30 1.87 x 10-6 0.31 0.105 0.025 4.2
4.1 0.42 30 2.10 x 10-1 0.25 0.089 0.027 3.4
48 0.21 60 0.97 x 10-6 0.31 0.209 0.052 .1.0
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Figure 1: The ',emperd~ture structure for run 48 at (a) t,5T, (b) 3.5T and (c) 4.07',
where T hs the rotational period. The centre of the tank is located at R =f 0.0 m and the
outermo•t thermistor is at R = 0.4 m. The solid thick line from R = 0.0 m to R = 0.2 m
marks the position of the heated plate. From the temperature data, the height of the
mixed layer can be plotted (d) against time, where the solid line is from equation (3).

After the commencement of the heating, convective plumes began to rise above the
copper plate, eroding the overlying ambient stratification, and by 1.5T (fig. 1a) a mixed
layer with thickness 5 cm has developed over the heated plate (the thick line on fig.
1). Initially, rotation therefore has the effect of confining the convective motions to
tihe region directly above the heated plate. By 3.,7', the mixed layer has thickened to
approximately 8 cm (fig. I b), but there has also been a partial incursion of ambient fluid
over the heated plate and these lateral adjustments are driven by the lateral temperature
gradients established between the mixed layer and the stably stratified ambient fluid. By
U.T (fig. 1c), the mixed layer has reached its near maximum value.

The mixed layer height can be estimated by taking the average of the heights as mea-
sured by the three innermost Profiling thermistors alcove the plate. IThe data for run 48
are plotted in fig. id, and show the steady increase of the mixed layer height with time
with a maximum value at t it 5ST. For longer times, the depth measurements are irregular
due to the inhomogeneous nature of the layer as a consequence of strong radial mnotions
and the, identification of a mixed layer becomes difficult.

Fig. 2 shows the development of the horizontal flow field at four different titTes and
heights over a 120" quadrant of the tank. The rim of the heated plate is marked by the
dashed line. Trhree• main regions of tile flow can be secii iT1 rig. 2. The first is a turbulen t
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Figure 2: The flow velocities at the times and heights of (a) 1.427T, 9mrm: (b) 3.47T,
10mmur; (c) 3.627, 30mrm; and (d) 3.9,5T, 70 mmrnfor run 48. Only a 120° quadrant of
the tank is shown, with the rim of' the heated plate marked as the dashed line. The table
rotation is anticlockwise (cyclonic).

region over the heated p late, where the small scale turbulent motion characteristic of the
convective plumes can be seen. Well beyond the plate there is a quiescent far field, and
between these two regions, there is a developing azimuthal flow or rim current. T[his
current was rapidly established just above arid at the edge of the heated plate by I.42T
(fig. 2a), flowing in a cyclonic direction (the same sense as the table rotation). By
3.47T' (fig. 2b) the current has increased in strength and is already highly distorted by
a relatively large scale wavelike instability in the current. Conversely, at mid-height of
the mixed layer and only slightly later (fig. 2c at 3.62T'), no rim culrrent can be seen and
only the turbulent convective motions above the plate are visible. Near the top of the
mixed layer at 3.95T (fig. 2d), on the other hand, a well defined rim current is again
visible, now flowing in the opposite (anticyclonic) direction, but distorted by a growing
instability, with eddies beginning to form. For longer times the instability continues to
grow in amplitude, eventually generating six eddies around the periphery of the heated
plate.

4. Results

Rotation controls the turbulence whet, the Rossby number. based ont velocity and length
scales characte•rizi~ng the turlhulerit scales of niotiori is sirall .The avwilable e/xl~rirlleTtal
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evidence (llopfinger et al. 1983, Fleury et al. 1991, Fernando et al. 1991, Maxworthy and
Narimousa 1994, Coates et al. 1994) suggests the critical lRosshy number lies in the range
0.20 < Ito, < 0.44 and the corresponding critical length at which turbulence properties
will deviate from their non-rotating values is in the range

1/3 1 /1
13L < h, < 42()

As in the ocean, h, is large compared to the depth of the stratified fluid in the present
experiments and this is consistent with the observations of Coates et al, (1994) who
showed the vertical and horizontal turbulent velocity scales and the integral scales of the
turbulence in the mixed layer were independent of the rotation rate and given by

w = 0.5(Bhh)1/ 3 , u = 0.3(Bh)/):' and I = 0.25h. (2)

In the absence of rotational effects, when a constant de-stabilizing buoyancy flux B is
applied at the horizontal boundary z = 0 of a fluid which has a constant density gradient
N, a well mixed layer of thickness h will grow according to (e.g. Turner 1973)

h = 21/"2B"/ 2t 2I/N (3)

Ivey et al. (1993) demonstrated that the deepening law in (3) is valid, and the prediction
in (3) is plotted in fig. Id for comparison.

Consider now the case where the buoyancy flux B is applied over only a finite circular
portion L of the horizontal boundary. The mixed layer will develop only over the segment
L and its thickness h will grow according to (3). As the mixed layer deepens, a horizontal
buoyancy anomaly is now developed between the mixed fluid and the ambient, fluid of
strength

g , N 2 h. (4)
The fluid will attempt to adjust horizontally under the action of the buoyancy forces in a
time scale N-' but rotation will limit the lateral adjustment scale to

LR - Nh/f (5)

i.e. the Rossby radius of deformation based on mixed layer height and the above will be
valid provided Lr < L.

Assuming turbulent effects are unimportant in the mean momentum balance, a thermal
wind balance prevails due to the maintained horizontal density gradient across the outer
boundary of the convective region of the form

Ou Og'(6)
'z O(r

where u is the azimuthal or rim current that must develop around the periphery of the
convective region, and r is the radial co-ordinate, Substituting (4) and (5) into (6) yields

fu .9g' N'h
h Or Nh/f (7)

or
u , Nh. (8)

____ ___
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Figure 3: (a) The peak non-dirnensional rim current plotted against the height z/h
for the two runs 44 (7) and 48 (a). Also shown is the line of best fit computed from the
data within the mixed layer (0 < - < 1). (b) The instability wavelength plotted against
the Rossby radius for runs 42 (*). 44 (V) and 48 (1). Also shown are the data for runs
50 (0), 51 (+) and ,56 (&) from Coates et al. (1994). The solid line A - 2.9Ln is the
minimum instability wavelength from the analysis of Samelson (1993) while the dashed
line is the estimated final value for the instability wavelength, given by A! = 3.3Ln.

Thus the magnitude of the rim current is simply the local buoyancy velocity scale, and
substituting for h from (3) yields

U (l )•• (9)

A Gaussian curve was fitted to the azimuthal velocity components from runs 44 and
48, and the position and magnitude of the peak in the rim current were extracted (see
Coates et al. 1994). These maximum velocity data, non-dimensionalized using (9), are
plotted against the non-dimensional height z = z/h in fig. 3a. The error bars for the
peak velocities in fig. 3a were determined as the rms value of the deviation between the
fitted Gaussian curve and the measured values. We did not attempt to compute rim
velocities by the above procedures beyond about t ; 2.51' due to the distortion of the
azimuthal swirl of the rim current caused by the growing long-wave instability for these
runs. The standard deviation aw of the Gaussian fit also allows an estimation of the
width of the rim current to be made, Defining the rim current width as 4aw, the rim
width is consistent with eq. (5) and is estimated to be W ; (1.7 + 0.7)LR.

As fig. 3a shows, the predicted magnitude of the rim current from equation (9) is in
good agreement with the observations, especially considering that the velocity data are
obtained over a wide range of depths h and times. If the radial density gradient in (6) is
constant with height, then from (6) the rim current magnitude in fact varies linearly with
height, as is the case shown in fig. 3a. The line of best fit to the data within the mixed
layer (0 < ,* < 1) is in dimensional terms

Upeak =Z -0.85B/1 't112 ( - 2)(10)

where h is given by equation (3).
The other feature clearly evident in fig. 3a is the apparent slow decay of the rim current

velocity with height above the mixed layer, where the signature of the rimi current (,art



in fact be detected up to 2h before it has decayed to zero. The momentum transport
coefficient applicable above the mixed layer will not be simply the laminar viscosity, since
firstly it is clear there are periodic incursions of mixed layer fluid above the mean height
of the mixed layer and, secondly, there is very likely a radiation of inertial-gravity waves
above the mixed layer into the overlying fluid which will effectively transport momentum
into the stratified ambient at rates above molecular values.

The long wave instability can be readily identified as a growing along-front perturbation
in the rim current. The scale of these instabilities was determined from the radial velocity
components as, once the instability had reached a finite amplitude, the maximum excur-
sion of the oscillation corresponded to the position where the radial velocity component
went to zero. Measuring the distance between these zero crossings of the radial velocity
data gave a measure of the wavelength of the instability. In each run the observed wave-
length increases slowly with time, a result also observed by Narimousa and Maxworthy
(1987) in a two layer model of the instability of upwelling ftonts, and after about four
periods the instability wavelength reached a maximum value. After this time, the excur-
sions due to the instability became large enough to break off into independent eddies,
and the general flow structure became very complex. The final value of the instability
wavelength Af at long times for the experiments is (Coates et al. 1994)

Af = (3.3 ± 0.6)LR (11)

where the Rossby radius Lr is defined in (5) and h is given by (3) evaluated at time
4r/f when the base geostrophic flow is eetablished. This estimate of the final wavelength
is shown on fig. 3b as the dashed line.

The stability analysis of Samelson (1993) predicts that the flow should be unstable to
wavelengths Af > 2.9L?, shown as the solid line in fig. 3b, with the fastest growing
wavelen gth A f = 5LR. The observed wavelengths are thus in the unstable range but are
smaller than the wavelength of the fastest growing mode predicted by the linear instabil-
ity theory. There are differences between the present configuration and the assumptions
oflineer stability theory. For example, linear stability theory assumes the initial distur-
bance is composed of a synthesis of waves each possessing the same initial (infinitesimal)
amplitude and covering all possible wavenumbers. Conversely, the unsteady base flow in
the experiments is perturbed by the small scale convective turbulence in the mixed layer
which has a preferred length scale, the integral lengthscale of the 3D convective turbu-
lence, and the amplitude of the perturbations is both finite and effectively distributed
over a rather narrow band of wavelengths centred around this integral lengthscale.

In summary, while linear instability theory is not directly applicable, it is clear that
theory and experiment are consistent in showing a similar dependence of the unstable
wavelengths on the local Rossby radius. Considering the overall dynamics of deep con-
vection, the most important point is that the rim current becomes unstable tW baroclinic
disturbances and this subsequertly disrupts the convective deepening.

5. Discussion

Schott et al. (1993a) reported results from a current meter array moored in the central
Greenland Sea in the winter of 1988/89. Vertical velocities of tip to 3cins- associated
with plumes estimated to be of 350m in horizontal extent and cxtending down to depth,
of 1400rn were reported during this deep convection event. I'he surface bhoyancy flux
B was estimated as B = 6 x 10-8m 2s-3 and with f = 1.A x 10-'s-' equation (1)
indicates the critical depth lies in the range 1.9km < h, < 6.2km. We conclude that
the observations down to depths of 1400 m are thus not cotntrolled by rotation and the
observed vertical velocities are given by equation (2) yielding

u, - 0.5(Bih)1/3 = 2.2 cms-, i : 0.25h = 350ni

in agreenient with the observations. Maximumn rim current velocities after 5 days would
he 7 cms-i (froni 10) at the top and bottomn of li, convecting regioli ald. W* hil, th,
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event lasts longer, the current is likely to be baroclinically unstable after this time. As in
the case of the laboratory experiments, the difficultly arises in choosing the appropriate
vertical length scale to use in equation (3). Consistent with the methodology above, we
estimate the appropriate mixed layer depth to be the sum of the initial depth of 350 T1
plus the deepening from equation (3) (using N = 4.2 x 10-1 s' from Gascard 1991) after
i = 4r/f, yielding a scale measured from the free surface of h • 600m. The implied
Rossby radius is 1.8km, an(d the predicted eddy scale is then 6kkm (from 11), which
seems plausible although no direct estimates were reported for comparison. Finally, it
is important to note (e.g. Schott et al. 1993b) that the velocities in (2) are turbulent
velocity scales and there is no mean vertical velocity associated with the deep convection.
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1 Introduction

1.1 Penetrative convection

When a convective mixed layer frced by a surface buoyancy flux is bounded by a stably
stratified region, convective elements may overshoot the level of neutral stability and
penetrate into the region of stable stratification. The region into which this overshoot
occurs, the penetration zone or entrainment layer, is characterised by a reveise buoyancy
flux. In the atmospheric planetary boundary layer it is known that the ratio between
the negative buoyancy flux and the surface buoyancy flux is typically -0.2 (Deardorff et
ai (61,))). Penetrative convection typically results in a steepening of the density gradient
* ti.t penetration zone, resulting in a .,rong pycnocine bounding the mixed layer. In
parameterising convective mixing in both the atmosphere and the ocean, it is important
to correctly represent the penetratioi zone, since it is through this region that properties
are conmianicat•,d between the surface mixed layer and the stably stratified region.

1.2 Influeilce of rotation on cornvection

i1 we 6eiii., the convective Rosby number as the ratio of advective to inertial timescales:
ito = w°/(fh) where w is the convective velo•city scale, h is the mixed layer depth, and
f is the coriolis parameter, and w* - (Bh)~l/3 l where B is the surface buoyancy flux, we
wouid expect rotation fo strorgly influence the convection when Ro < 1 (Fernando et al
(91)). In the ocean the surface buoyancy flux is Tisually significantly less than that in the
aamosphcre, so tli- unlike atmospheric convection, ucean convection may be significantly
influenced by rotation. Numerous studies of non-rotating penetrati're convection have
been iaade, but penetrative det pening of the mixed layer in the presence of rotation has
rec• iced little attention, although there have been some recent studies of the entrainment
cf a mechanically forced turbulent mixed layer with strong rotation (Fleury et al (91)).
Hence the following simn .ations will examine penetrative convection in the small Ros-.by
jiumber limit.

1.3 EIxperinmental design

"V'- pre.qnt results cf several simulations of convection into an initially uniformly stably
strat:fied fluid. The simulations are distinguished by varying rotation. Our model does
not "nc!ide the -flects of saliniLy, and density is linearly proportional to temperature. The
flux Rayleigh nuanber applied at the upper surface is held constant at Raf = 1.4 x 10i
and i• defined by

Ra = (1)
I/ Z.
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Figure 1: (a) Horizontally averaged temperature < T > (b) Horizontally averaged tem-
perature gradient d < T > /dz, at t = 0.05. (i) No rotation, (ii) f = 2500.0, (iii) f =
8000.0 (non-dimensionalised). Rat = 1.4 x 108 and initial stratification (OT/Oz)o = 0.1.

where g is the gravitational acceleration, a is the coefficient of thermal expansion, L is
the length scale, v is the viscosity, r. is the thermal diffusion and &T/az is the tempera-
ture gradient at the upper surface. The initial stratification, non-dimensionalised by the
magnitude of the temperature gradient at the upper surface, is (dT/dz)o = 0.1, for all the
simulations. The integration domain is a cuboid volume of aspect ratio 4x4xl, spanning
a depth of z = -1.0, to z = 1.0 non-dimensional length scales, and integrations are car-
ried out at a resolution of 128x128x65. Boundary conditions are stress-free at upper and
lower surfaces and periodic at side walls, while flux boundary conditions are applied for
temperature at the top and bottom ((dT/dz),-_I.o = (dT/dz)o and (dT/dz)0 =1 .o = -1.0)
(non-dimensionalised). Results of these simulations are examined after initial transients
associated with the onset of convection have decayed away, and the mixed layer is deep-
ening steadily.

2 Influence of rotation on statistics

2.1 Mean temperature profile

Figure 1 shows the instantaneous vertical profiles of (a) the horizontally averaged tem-
perature and (b) its gradient, for the three simulations carried out at varying rotation.
The control run, having no rotation, demonstrates many of the well-known features of
penetrative convection. A negative temperature gradient is confined to a small boundary
layer near the upper surface, while the mixed layer has a uniform temperature. Below
the mixed layer is a region of enhanced temperature gradient. The two runs with strong
rotation show significant differences from this control simulation. As the Coriolis param-
eter increases, an increasingly large negative temperature gradient is maintained in the
convectively mixed layer. A similar negative temperature gradient has been observed in
simuiati .,s of Rayleigh-Benard convection (Julien et al (94)) and laboratory experiments
(Boubnov and Golitsyn (91)). Strong lateral mixing generated by the cyclonic vortices
associated with convective plumes in rotating convection appears to inhibit the vertical
mixing process. The enhancement of the stable stratification in the penetration zone
observed in the non-rotating case is considerably reduced for strong rotation.

2
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Figure 2: Horizontally averaged convective buoyancy flux < w'T' >, at t = 0.05. (i) no
rotation, (ii) f = 2500.0, (iii) f = 8000.0. Parameters as in figure 1.

2.2 Negative buoyancy flux in penetration zone

Figure 2 shows the instantaneous buoyancy flux as a function of height for all three
simulations. The positive buoyancy flux associated with the convectively mixed region is
slightly reduced as rotation is increased, as is the depth at which this buoyancy flux tends
to zero. However, much more significant changes are observed in the penetration zone,
where significantly less negative buoyancy flux is observed for strong rotation. The width
of the region of negative buoyancy flux is also considerably reduced at high rotation. The
two rotating cases io not show much difference between them. It is to be noted that
the magnitude of negative buoyancy flux in the non-rotating case is only about 50% of
that observed in atmospheric convection, an indication that the Peclet number of these
experiments is relatively low, where Pe = w'h/t. The relatively low resolution of these
simulations means that n is large. Higher Peclet numbers will require higher resolution
simulations and are the focus of current work by the authors.

3 Time-dependance of mixed layer parameters.

3.1 Temperature gradient in the mixed layer

Figure (3) shows the temperature gradient in the center of the mixed layer as a function
of time. For the non-rotating case, as an efficient turbulent convection is established,
this temperature gradient quickly equilibrates near zero. Both the rotating cases are
significantly non-zero, with the magnitude decreasing as mixed layer depth increases with
time.

3.2 Vertical velocity scale

Figure (4) shows the maximum value of rms vertical velocity as a function of time, indi-
cating that rotation significantly reduces the vertical velocity. The rotating cases show
significantly smaller fluctuations than the non-rotating case, probably due to the greater
number of plumes contained within the volume, over which the horizontal average is taken.
In addition, the slope of the curve appears to be different for the two rotating experiments

S... . .. .... .. . .. .. . . . . .... . . .. .. . ... . .. ...... . ... . .. . .. .. .. ...... .. . ..... ....... ..... .. . .. ....
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Figure 3: Horizontally averaged temperature gradient in the centre of the mixed layer, as a
function of time. (i) No rotation, (ii) f= 9500,0, (iii) f=8000.0. Parameters as in figure
1.
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(ii) f= 2500.0, (iii) f=8000. 0. Parameters as in figure .

as compared with the nonrotating experiment.

3.3 Mixed layer and penetration layer depths

We may define the mixed laye, as either the depth at which the temperature gradient tends
to a moderately stable value (one tenth of the initial stratification was chosen) or as the
depth at which the convective buoyancy flux first passes through zero. Measurements of
the mixed layer depth defined by both the above criteria are shown in figures (5a) and (5b)
respectively. Also shown is the mixed layer depth calculated by assuming non-penetrative
convection, in which h = V(2t(dT/dz),=0 .o/(dT/dz)o (after non-dimensionalisation). We
see that the depth at which the buoyancy flux passes through zero shows little variation
with f, while the mixed layer depth predicted from the temperature gradient is slightly
deeper for the non-rotating case. All are less than the non-penetrative prediction, but of
similar tendency with time. The maximum depth of the penetration zone, defined either
by the depth at which the temperature gradient tends to the background value (figure
(6a)), or the depth at which the buoyancy flux and its gradient tend to zero (figure (6b)),
is significantly less for the two rotating cases than for the non-rotating calculation. Bence
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Figure 5: The mixed layer depth as a function of time. (a) The depth at which the
temperature gradient tends to 0.1 of its initial value. (b) The depth at which the convec-
tive buoyancy flux < wv'T' > passes through zero. (i) No rotation, (ii) f= 2500.0, (iii)
f=8000.0, (iv) non-penetrative prediction. Parameters as in figure 1.
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of penetration and the mixed layer depth is significantly reduced at strong rotation.

4 Discussion

The principle differences introduced by rotation in penetrative convection appear to be
a reduction ir, the magnitude of the negative buoyancy flux and in the width of the pen-
etration zone, a reduction in the velocity scale, and a significant negative temperature
gradtient in the mixed layer. All imply a less efficient transport of properties in the vertical.

The reduction in the magnitude of the vertical velocity is reminiscent of experiments on
unsteady convection into an intially homogenous fluid performed by Jones and Marshall
(93). They suggest that the velocity scale for rotating convection is reduced compared to
non-rotating convection because the horizontal expansion of the convecting colls as they



deepen is suppressed in accordance with the Taylor-Proudman theorem. It is possible
that the reduction of the magnitude of the negative buoyancy flux is due to the lower
Peclet numbers in the rotating cases, caused by the lower vertical velocities. However,
the magnitude of the negative buoyancy flux is reduced by a much greater proportion than
the vertical velocity scale. It is also possible that reductions in the horizontal scales of the
convecting elements by rotation (as observed by Jones and Marshall (93) and Julien et al
(94) for example) reduce the penetration depth of the elements, if the depth to which the
plumes penetrate is a function of the length scale of the vortical circulation associated
with the plume (eg Breidenthal (92)). The reduction in the efficiency of vertical transport
of properties indicated by the temperature gradient would also imply less efficient vertical
transport into the stably stratified region, and hence, reduced penetration. While further
analysis and simulations will be necessary to resolve these questions, these preliminary
experiments make it clear that rotation can significantly alter the mean properties of the
convective mixed layer, and its effects should therefore be considered in ocean mixed layer
models.
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Abstract

The instability and weakly nonlinear dynamics of convective motion in a horizontal
layer heated from below Is studied when the upper boundary is deformable and sup-
portive of internal gravity waves. The linear stability is defined and weakly nonlinear
evolution systems for specific modes are obtained. It is found that a strong coupling
between a long gravity wave and convective motions exists leading to episodic mixing
events.

1 Introduction

The phenomenon of thermal convection occurring in a horizontal layer heated from below has
been studied extensively, both because of its relevance in physical contexts and its utility as
a model for pattern-forming instabilitie. and transition to turbulence. In the present study
the coupling between convection occurring as a result of thermal instability and wave motion
in a contiguous layer is considered. This is motivated by the role of convective transport in
mixing processes in the upper ocean or in the troposphere. In either case, the convective
dynamics occurs in a layer adjoining a stably stratified medium. As a consequence, convective
motions may "resonate" with internal waves leading to enhanced transport and even wave
breaking. On the other hand, the action of waves in a region next to a convective layer may
modulate the local Rayleigh number and, thereby, effectively inhibit couvective activity, at
least when the modulation Limen scale is sufficiently short. It appears, therefore, that off-
setting effects exist and the nonlinear coupling between convection and internal waves can
lead to some non-trivial dynamics which may have important practical implications. it is
the understanding of these dynamics that is a4dressad here.

2 Problem Definition

In the present discussion we seek to clarify the basic features of the interaction of con vection
and internal waves and to assess the significance of the interaction in practical conmexts. For
this purpose, the prototypical model shown in Figure I containing the minimum structure is
employed. It consists of a convecting mixed layer bounded from below by a non-deformable,
stress-free, plane isothermal surface which is heated. Above the convecting layer is an un-
bounded domain of homi~geneoizs fluid. The arrmbient medium is immiscible and separated
from the convectiag layer by a deformz.ble interface across which a stable density change



4

6p exists. To simplify the analysis, we invoke the Boussinesq approximation and, for con-
sistency, assume the density anomaly 6p across the interfacial thermocline is small. An
important dimensionless parameter 5, the ratio of the density anomaly to the magnitude
of the (unstable) density change across the convecting layer, emerges which measures the
deformability of the free interface. When 6 is order one, the time-scale for convective mo-
tions is commensurate with the period of long gravity waves and a dynamical coupling is
possible. When 6 becomes large, the time scales are disparate and the deformability of the
interface becomes negligible. This is the case, for example, at the air-water interface at the
ocean surface. The formulation of this problem with specification of the interface matching
conditions is provided by Pavithran & Redekopp [1994].

To isolate the essential aspects of the problem we focus on the special case where the ambi-
ent fluid continguous with the convecting layer is perfect (i.e., inviscid and non-conducting).
In this limit the ambient fluid is "passive", but the capacity to support an internal wave at
the deformable interface exists. The parameter 6 defined above then enters via the normal
stress condition which, for motion in the (z, z) plane with respective velocity components
(u, w), can be expressed as

Ra 4+ p - -2÷ ( ,,-u, + w.) + ý) = 0, (1)

where subscripts denote partial derivative with respect to the indicated variable. In writing
this expression, where the Rayleigh number Ra appears in addition to 6, we have used
dimensionless variables based on a length scale equal to the layer depth d and a time scale
equal to the vertical diffusion time d2/ic. The temperature anomaly 0 is scaled by ;--l
where a is the coefficient ot thermal e-pansion, and the perturbation pressure p is scaled
by 2d,, where pi is a reference density equal to the static value at the lower, isothermal
boundary. The x coordinate iE in the plane of the lower, non-deformable boundary and z
points upward from this boundary. The condition (i) is applied at the disturbed interface
position z =+ C(x, t). A rzixed thermal boundary condition is specified at the interface
which allows fur an interiacial (convective or radiative) heat flux so thai at. equilibrium,
hydrostatic state atta~ned by heai.ng from below is possible. The thermal cund*t4on which
is aiso applied a&. the defoirrable interface located at : -I + C(x, t), is given by

The dimensionless parameter B appearing in this relation is the Eiot lumber bared on the
heat transiier coetficien'. at the free iltertece. Tie left hand side is the conductive heat flux
in thrc ,or.vecting !%yer evaltiated at the posatinn of the deformed interface. Th- right hand
side gives the (convectivz or radiative) heat flu, from the interftce from abuve minus the
eq•ilibri-m fiux evriuated at. the locaticn of the aeformed interface. As the Bliot number
bec'i:nes lerge, corresponding to very efficienL heat tran3fer from the interface, tht ,:ondit ion
for an isothermal surface is approached. As the Biot number tends to vanish, the condition
of an insulated boundary is approached. The u:e of the Biot number in this s~ngle-lavec
model ;s helfill for distinguishing the differenm modesi of convective instability and ciari'ying
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different limits. The remaining boundary conditions at the interface z = 1 + ((x, t) are the
kinematic condition

w =t + uC., (3)

and the vanishing of the tangential stress

-(1 _ + u.) + C..(wa - uS) = 0. (4)

The conditions at the lower non-deformable boundary correspond to those for an imperme-
able, stress-free, isothermal surface.

3 Summary of Linear Stability Results

The linearized problem for the convection model defined above admits two modes of instabil-
ity for order-one values of 6 and B. There is a short-wave mode which exhibits a stationary
bifurcation at onset. There is also a long-wave mode with an oscillatory instability, The co-
existence of these two modes was found by Benguria & Depassier [1987] who considered the
linear problem of convection in a horizontal layer with an order one density change across
the free surface. The critical Rayleigh numbers for these modes also vary with f and B,
and conditions exist where the short-wave mode can dominate over the long-wave mode and
vice-versa. For example, the critical Rayleigh number for the long-wave mode is given by

R18( + 1) 2

Ra =18-B+6

One observes that the critical Rayleigh number for this mode is independent of the interface
parameter 6 and approaches a value of Rak = 30 when the interface is an insulated boundary
(i.e., B = 0). As the Biot number becomes large and the interface approaches an ibother-
mal boundary, the critical Rayleigh number for this mode tends to infinity and the role of
this oscillatory, long-wave mode of convection vanishes. At intermediate values of the Bi.)t
number a mode competition can occur.

On the other hand, the critical condition for the stationary short-wave mode depends
strongly on 6. For asymptotically large values of 6 and B -. oo, the critical Rayleigh number
approaches the well-known value 271r 4/4 for convection between non-deformable, isothermal,
stress-free boundaries computed first by Rayleigh (cf., Chandrasekhar (1961]). Pavithran &
Redekopp [1994] derived the asymptotic results for convection with these boundary condi
tions

k"2 9,r8 + 0 (1.2, (6a)

S271r 102+0 / 2b)Ra" +0 l• . (Gb)
a 4 8 13

As 6 decreases, the critical condition for this mode moven to lower Rayleigh numbers and
lower wave numbers. This is indicated by the bold arrow in Figure 2. The variation of the

3



critical Rayleigh number Rat and associated wave number k, for the special case B -- oo is
shown in Figure 3. One observes from this figure that the critical conditicn for this mode
moves to the origin of the Ra-k plane at a finite, critical value of 6 = 6c. The critical value
of E for arbitrary Biot number is given by

= 3(B+ 1)' (7)

With isothermal boundary conditions (i.e., B -- oo), 6€ - 1/3, the value indicated by the
numerical results shown in Figure 3. For small values of B, the critical value approaches
6. = B/3.

4 Nonlinear Evolution Equations

Application of a consistent asymptotic approximation for the dynamics in the vicinity of the
critical Rayleigh number for the onset of convective motion via a stationary bifurcation at
finite wave number, assuming the Biot number is large so the long-wave mode is damped,
leads to the scaled evolution system

At = -ikcUA + pA - '-HA + A,, - IAI2A, (8)

Ht = -V, + aH,. - v(A12 )", (9)
U, = --0H:+a(1A 2).,+AU.. (10)

In this system A(x,t) is the modulation amplitude of, say, the vertical velocity c" local,
convective motions with spatial periodicity 2r/k,. H(x, t) is the slowly-varying or long-wave
component of the interface deformation which has a corresponding, horizontal drift velocity
U(x, f). The first equation is consistent with that obtained by Newell & Whitehead [1969] in
the case where U = H = 0. The Doppler-shift effect, under the condition H = 0 so that both
boundaries are non-deformable, was shown by Zippelius & Siggia [1983] and by Coullet &
Huerre (1986] to have an important dynamical role in the case of convective patterns. They
demonstrated that the marginal, vertical-vorticity mode in cases with stress-free boundaries
couples effectively via the Doppler term in the first equation. In the present case, a strong
dynamical coupling occurs even for convection in the plane where the vertical vorticity mode
is not active, When convection is absent (i.e., A = 0), the last two equations describe
the linear, non-dispersive propagation of an interfacial gravity wave which is damped. The
degree of freedom asociated with the height field (or compressional mode) gives rise to a
non-trivial coupling between convection and waves even for motion in a plane.

The system (8-10) describes convective rolls coupled with waves whose wave number is
oriented in the same direction as that or the rolls. Strictly speaking, the vertical asym-
metry of the present model implies that the planform of convective motion near onset is
hexagonal (see, for example, Schluter, Lortz & Busse [1965]). However, at higher values of
the supercriticiality measured by the growth-rate parameter p, rolls can become the stable
configuration of convection. This has been confirmed in this case by Pavithran & Redekopp
(1991]. Hence, it is believed that the above system has general validity. This can, ir. -act,
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be established by appealing directly to the invariance properties of the underlying equations
for the problem. The principal features of the coupling described by the above system are
the generation of a drift current (for o i 0) by spatial inhomogeneities in the amplitude of
convection, the Doppler shift effect of the drift current on the phase of the roll amplitude
A(x, t), and the modulation of the linear growth rate (for -/ 0 0) through the variablity
of tile convective layer thickness associated with the concomitant wave field. Self-nonlinear
and dispersive effects of the long-wave drift field would enter the latter two equations at
higher approximations in the asymptotic sequence. Preliminary numerical simulations of
the system (8-10) reveal that the convective activity can be. uite episodic. As convection
ensues at super-critical conditions, energy is transferred to long waves which both modulate
the local Rayleigh number and radiate away. As a consequence, the convection amplitude
declines until a quasi-steady, super-critical state is re-established and a new burst of con-
vection occurs. The nonlinear dynamics of this process, as well as the efficiency of internal
wave generation, are under study.

A phase dynamics study of spatially-periodic, finite-amplitude roll solutions of (8) for
U = H = 0 has been performed (cf., Redekopp [1994]) for the evolution system (8-10). The
phase dynamics is third-order in time for the general system. The linear equation for the
phase O(x, t) in the long-wave limit is

Ott = uO..t + bO. + co . ( )

The third-order dynamics arises through the simultaneous breaking of the Galilean invariance
and the release of the large-scale compressional mode. When the parameters =t 7 a = 0
in (8-10), both of these broken invariances are suppressed and a = c = 0 in (11). In
this case (11 ) reduces to the diffusive phase equation familiar to the Eckhaus criterion (cf.,
Pomeau & Manneville [1979]). When 6 = -t = 0 in (8-10), the compressional mode is
suppressed, but the Galilean invariance is preserved. In this case b = c = 0 in (11) and one
obtains a propagative phase dynamics discussed by Coullet & Fauve [1985] and by Coullet
& Huerre [1986] in the case of convection between non-deformable, stress-free boundaries at
low Prandtl numbers.

Over a range of the parameters B and 6 the onset of convection occurs through an
oscillatory, long-wave mode. Considering only the nonlinear evolution of this mode, and
after some scaling to balance the leading-order nonlinear and dispersive effects, one obtains
a perturbed Korteweg-deVries equation which can be expressed as

h, + nhh( + mhg•• = -g(Ah(( - h(,!4). 1,12)

The parameter A measures the criticality of the mode (i.e., A > 0 for Ra > Ra.). In
this case one can find equilibrium, propagating states which are driven by the release of
potential energy through convection and damped by the dissipative processes. This equation
is applicable when 6 > 6, defined by (7) and is written in a coordinate system (, 1r) which is
moving along a characteristic of the linear, non-dispersive system. This analysis reveals that
propagating cells of convective motion are possible which are associated with finite-amplitude
displacements of the interface.
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Another long-wave limit exists for b te be. In this case the critical condition for the
short-wave mode approaches k = 0 and has a critical Rayleigh number below the minimum
value for the long-wave mode. The dynamical evolution under these conditions can also be
defined. It is described by a "damped" Boussinesq equation

h7r - Shxx - ri(h2)xx - r~hxxxx = -Athxxr. (13)

We have not examined this limit in much detail as yet. However, based on earlier work on
the Boussinesq equation by Hickernell (1983ab1, who showed that a class of solutions exists
which become singular in finite time, there may be conditions where the coupling between
convection and waves can become quite violent.
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On the nature of multicell flow regimes observed
in confined thermosolutal convection with lateral

heating
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Ab.sract

As has recently be-en uncovered by Tidterblit, & Kit (1993), thie laterally- heated
thermosolutal systems are characterized by a great variety of the multiple steady
flows. In this paper. the attention is focused onl the the st~ructure of steady solu-
tions at a value of Ra5. larger than that broachtid in th',) above work. This structure
is characterized by a number of additional limit points anid symnietry-breaking b-
ifurcation points, and apart from one-, two., three-, and four-Cell flows hirident
to the smaller Ras. five-cell symmetric ,ind asymmetric flow patterns are also ob-
served. Qualitative characteristics and stability of the multiple steady solutions are
discussed frow the standpoint of their possible relevantce to the nature of thei flow
patterns observed in previous studlies, performed at the very large fIMS.

1 Introduction
Since thme classical works b-y T1hor-pe, Hutt &'. Soulshy ( 1969) tuid Hart ( 1971 ). where the
douLble-diffulsive iti.,tahilitv was establhished as the key miechanism causing the ciiiergence
of colivective layers ini all infinite laterally heated slot containing stably stratified brine,
thit behavioa- of the lavers has beeni extensively studied ill applicatior' t~o hilite (iclcostires
(see C 'hen. Briggs, and W irtz~ 1971. Lev. llyu n k Kang I 990. Lee k llyun 19)91 . andI the
references thereiti). Both thev !emporal evolutioni of the- systemi of convective lavers andl
the developed states were found to depend essentiall 'y on the ratio between the soilute (omi-
cent~ratioti and tenmpe~rature gradients (the buoyancy ratio). lit particular, whlen the vdlue
of this p~arameter was vdried, the convective layers were founid to forml either suiccessively
from top and bottom of an enclosure- towards its center or simultaneously throughout
the entire cavity. flows possessing different numbers of cells with amid without regions of
almost imotioniless fluid between them were found. symmetric and asymmimtetric transienit
Mind steady, or quasi stcadly, flow patternis were observed,

Rlecently, Tsi tverhlit. k Kit (1993) (subsequiently 1'K) haive emphasized the role of
steadv bifurcation phieimolitema in the formtationi of thte convective lakyers. The litimlt iplici-
t. of thle Steady flows was thivi (leiuoist~rat.ted by I'sitverblit (19941) (subsequemi0 v TI) to
de~rive fr-ont mtom-degi-nera-te hyvsteresis poilits amt'l isolas of asymmimmmet tic Solutions. ar-isinig
aS t he salinlity Riay-leigh lt numbr is inicreasedl front its critical value designating lite colit-
mnemmCcI(Vuent. Of the doublle-diffusive regionl (Hart 197 1 ). Based onl the' results of' q' atd T41.
01Wmlul Cainc-i) that the bifurcationi llwntnmmena at the lam ge Values of Ras5, relevaitlit to mlost
lpreviotts st ttdies, is Ixtc~~ o he So immcreasinglY complex that. the comlpuitat iomcal cost"



needed for its exploration would probably be prohibitwive. I view of this. the pr|pose of
the present. work hcas been to examine the types of steady flows and their stability at as
large Ras as is allowed b* reasonable computational costs. Such data Would elable oiie
to establish regularities in the traits of the steady solutions that. could give an insight int o
the nature of various flow regimes observed in the previous studies. performed at the very
large Has.,

2 Formulation of the problem
The problem considered is essentially the same as that described in TK. In part icilar. the
aspect ratio I = H/d (II is the height of an enclosure. d its width) was set. t.o -ý = :1. The
salt concentration Rayleigh number, however, was specified to he lArger than tha. used
in TK, Ras = 9 /3d 4(2)/ksi - 60000 (in TK. Ras = 30000 wa&. considered). y being
the gravitational acceleration, 3• the coefficient of solutal expanisioa. (f219) the imposed
solute concentration gradient, ks the diffusivity of salt, v the kitnenatic viscosity. "hl'(
Prandtl number Pr = v/kr = 6.7; the Schmidt number 5ch -- vl/k- =- 677. tiere. k,
is the diffusivity of heat. The Boussinesq approximation of the steady two-dimensional
Navier-Stokes equation in the conventional vorticity-stream function formulation. toget her
with the energy and salinity diffusion equations have been discretized by central finite
differences to obtain a finite-dimensional system of equations. The boundary conditions
incorporated into these equations were as follows. The horizontal walls were assumued
to have constant concentrations of salt and to be adiabatic. At the vertical walls, a
temperature difference was specified at each step, and these boundaries were taken to be
insulating to salt. All the walls were assumed no-slip.

The Euler-Newton continuation method was applied to trace out the solution of the
finite-dimensional system of equations as thermal Rayleigh number Ra'j = goA7'd~'!kTv
is varied. Here, a is the coefficient of thermal expansion, AT is the temperature differ-
ence between the vertical walls. During this procedure, the presence of limit points was
detecttd by noticing the failure of convergence of the Newton method. Limit points were
rounded using the Keller (1977) arclength continuation algorithm. Asymmetric solutions
were reached as follows. First, a small asymmetry was introduced into the governing
equations in the vicinity of a Jacobian sign alteration observed during continuation of
the corresponding symmetric branch. Thereby, the unfolding of the symmetry-breaking
bifurcation point associated with this sign change was achieved. Then, the solution of the
asymmetric equations, continued through the unfolded bifurcation point away from it.,
was used as the initial approximation for the Newton-method iterations to arrive at the
nearby asymmetric solution of the symmetric problem. Once such a solution was reached.
it was continued away from the bifurcation point by the above continuation methods.

3 Results
Tile results of T are indicative of thu presence of three qualitatively different scenarios
of pronmotion of the solution multiplicity when the salinity Rayleigh number is increased.
The first. two of them art, associated with the bending of a single branch and emergence
either of a pair of limit points. via the formation of the corresponditig noi-dlegetierate
hysteresis point (this mechanisni is illustrated in) fig. I a), or a single limit point oti an
asynimetric branch. changintg the criticality of one of the associat sl Ihifurcat lon ploints Ili
the quartic synimetry-breaking hifurcation (lig. I b). The third one is essentially due to
tile format ion of the isolas of asyminet ric solut ions at the sy'nmet ric brancies, ft(uin1 eac8
of which, a pair of symnmetry -hreaking bifurcations is horn (this is illustrated ili fig. I
c). Due to the action of these mechanisis. the structure of steady .olIutions etvetimiallh
becomes extremely complex. In particular. the bifurcation diagram for R,- = 60(NNi.
cotmputed in this work, is represented in fig. 2. For (omparison, the full versioii of Ilhi
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hiftircat ion diagraum at Has~ =:0000 (fig. :3) is also presented. part (of which was already
(listiiiisee iii 1'K. Here. o(x) stands for a functional raph iring thme variat~ionm of ai ma. ire'
of tile -- 'mnmnetric component of solution vector x, and so. t wo as ' ynitet~ric biranciehes- It I t.
clashel lines-). bieinig file resuilt of a a miutmetr -breaking hiftircatio poin)~t. are- (le'piicl 'Is
one. Flar I lit clarity of I Ifw figures. 0f x) was initentionmally minade' it) itit ream, whlie'ie'vet it
limit point is piassed irre'liect n-ive of tlie( real liehaviot of lilt- fluntoid Ie-hl musei. III Whai~t
follows, we will foctis ouir attention primarily oin the %itiguiarities and iypea of flows notl
having their analogues ill time bifurcationi diagramI for Ra"q = :IwxxbO.

'The avnmititri solutionsa arc representied itt fig. 4. Like in the mitws at the si-.1alle't
vallues of ftelq. Cotnvective' mnotiotn is sn',i to have atinmut no effect ()n lit-m temipt'rattire'
field, which rentaimis very close to conductive due to tile low intensity oif conmvectioni at lile.
stmall R~ayleigh numbers. The chanuge in the salinity' field however. tire a lot tilort' tangihkr
owing tl lit-e tuuch smaller dliffusivity of salt. A% the soleadN solution is cuntianued in tilt-
therimal Rtayleighm nunilwr froiti zero akoug branche~s S.. .. IV' fig. 21. two en1d cell,
gradnally take up tihe entire ellcl(MturW (fig. I a). as a"s the case' alm., at ftt.ý IOIMMXI i'ee'e
fig. 2 a.b.4 lin TK). The intensit1% of tile cels &t H", = 60XM).I leiwm'"- 11i slig ~lt fl iight"
thaun that of t hrim analogues. at fiu, = (KM~ (fig 'I , fmm 'UK . will( 1, 1s exhuhmtc'cl1 Itei i t6
tlI(' iMore' -igilifiCAt9t delinortiotia fit t ile rouitataimi .alinit% litme% aime tihe larger smielumlations
fitilt-w isouthertms. Over brastch S4 . tihe two cells iwecomite ctuddivel toge't lie near th 1w ecim..'
of aim eicleosure'. amid as limit plaint 1.4 is passed. I he fcru'mat ihli of t web addii titumaicll" I"
obaserved at tfim e'nd waills (fig. Ii oil e1% isIiereVA4"ee aheeig Iluatichi V;I. lilt fpour' lI
arra% . it graetitally built Ifig. 4 ci With furt her inemdmt'xe of Hill. the' nitemisitx of c'aeia

grl ows. whimc; is reflected l ii tile laine or c-onstanmt nahmint% (fig. 4 d 1. Time exmsrlte~m" of
livaiit point 1.5. hmmwexr. firmngs a nutaller ci chakge si il tim deve'~prnent of lit- [out tell
flow Wili thre'prer to Has = 10000- i In ;afticmlar. aflt-t thik limit femit it ha lIa¶'i pa~ssed.
two central cells are foumitd to bm' dertached fromt rat-It other i figt 4 e atid %tart ilmtetacituri
Witlli their e'td' wall (ouuatelt-parts As a resuilt oft -uch amt interactions. Ilife- *-tfi (ells art-
liromessitii'el% suppreswed by lithe rowimag cells lin time 4e tit' ( fir, I Ai. After liuttle Isimim
L6 is roumid'cf. two cc4t rAl tell-. zenmamam alloime. (fig. I III

Thius at thise stage. thme e'fle'et of Otte mmmurease.II lilt itui frNM:IfJ to 6i~MMI olil t.tc
%Ytimttietric.%olutmwt %trtictutjr svel'tt to INC rewitmcrd to) the' en nc'Of thme adefit menal -
t VN' structure 4cumm INtKi of 11mnmilmai iutmts 1.24n 6ic I~i 1mjlc'o t'inevlokmm.i braumei
S5~ at Ha, = :10M0. Ini spite (if tim e''xisteivc oft time' filtr t-4l flow ahoeimig time assosciatedl
branches. lmow,-ver. tile pattern ultimiately fortistelit-eAt I.4i i. taf time two-rell type' (fig. .
If). like the mov near limit poitnt 1.4 lat the yern outits of baratmim S41m Them.' two el
remain alomne withitn an immterval of brantchi ST amov' hiettlit ,rnint Mi. lbut aM thme' thewrimal

Rayeig 11111[Wtis 11-Ifi~iflilt.ili-r am aonmg t his bi anci. two uatlie (4e1l% arise- again
lUh ittime, the fogrniatioma ofthe four-cell flow mtanwatsssiateei Wilim tie periphieral pArts of tie

st reatulitme- of time- cell lair starlnt 14i t separate' f(toil) thle' miaini immlao ' of tle' ce'lls, Fliewe'
%eparating oegions hee-UmneAII0 aliio tachisemu from their parci-ts mtasoiifestmm thinsmma 44%,4, like'
smlall sMigle'I Cell- (filt. m1 Wit Iifrt flit', ii I em'i-s 1 Hit 1c,. time'- mewli, forime'e s.111,0 1 0.11.
gtrow itl size reach aig approxinlately thle'4 eimimellullsmu oif Ilia.' luat-1 reiente. thIeimr 11'mte'm*it
eawo inc(reases (fig. I j). lit %spite oif litim- porc'-'m e' lof lie' alditmolimalI wmitI rea1 m4 te it-.
hifuire~ atol dineagtiammi at Ill, (MMKIIII ' - t 'vpl. at rimet tire. 1tie sehWitlim limit m-,11 /' ,
Mill I. Me11V11 m It'ellmm'm devc'he01111Pmm 1iet f thet' foima 1-4-11 0411A qumalitIII- 1ti'1 mmmiie ,11 .1141111uii
ihe' blriemie- *%') il fit .1. 411'te, tme li it- 1'1t'att moim iNciwee'mm P'ath oif tihe' * emit r.1 tell-s esmi -w

118m1e1 mine) it-. 0'mml- wall e citmle'r hart lcilttime' oathler, ti. %sheile' aira Ia'.le's mimi- twakea ,i'i ti
time- lmackgrotium lo tiftlie- Arisming kiiroefitimmg st1 ieamm im's lug I ki Uhlm 4e-11,t 6111 t 1411
faile' awaiI iiitime vicimmit % if limit I'moimi 1.41 at WuanistIm %"# fi ho I ) 1 imlike' the' rvi,'a' At aa
lld. .. :010101111 hlPA . ml itI lee glemi misitj -q~'f a fitX- wlhem thaii i three? el '.'It; I li a !i
1, Ilwt~liCj'11~ afte iumiuemg limi4111tit111 peumim /'A \ota fair fieti1i time- .611tsA't euf time' 11%4' e'11 t141%%
IlIi,- arraiigemtie'ums of tile. e14 'llsin lit floti 14-'mm1m141 t hat In ll I et- el 'I'll mrl'esm stIb
aim aud1114t ioiml elI m41 time Ila. e'iime'm figt 1 1mmi Fl'xe c8e'hP. Arvaugee1 lie s, -ere lffc'rl ltiiauuiii 'I[,
folea.iiml at time' 'email I m I4 oarie Ha i ftne, cmxci hi aisii*10 m fig Imm' lime,, miutoa m 1 1 tiete'r 1ae ma
rc'sumlt% mum t hat twoi #-fimdllsPlo ajiprw'rmasl1 hore theier ititemi'it' % fiK I eat amid pm01t141 all'
'.ammish v-s Inuit poisii 1.0 1% isappitwia eel *filt I it! I'the three' e11 94'lA flow11-0 fa Ilel imt- Ai,01%a

imimfe~cies .esimec tio'tmuertfie at imasms Aleocng hlranebhý- sA .*' Il at 1m' 11M @'Ic el 111 ill 114e



cell a fter imdIt point L14I is pas.-sd. Theme, changes, however. are qitalitat I vely identical to,
t h app~ropiriate events at Ha. =3:0000. for which reamori. t liey are not !~escri he'i here.

Like at dihe smcaller values of Ru.%. tilt- riultiplicity (if the svnhnictric flows, described
41)0 V4' IS atsiitIWe R aVArietY of asyitinietric solutions. being the rentilt of %svtnnlwt r%
bireakinig bifurcat ion points 11l. H ... 11ý They are (Ipicted Iby t lie- iashd1 lines fit fig. 2".3
lIn particular. like for Rau,, = :10M0) (see fig. 2ý 11.i in T 1%I. lilv' ofset of tilt- firqt jinstahilit
1s Catisled byv life breaking of the central svmnietrY between tile end cells at syniuirt:tr
loreakinig bifurcation ;xirtt HI. Tre' total numnirler of the hif;urcat iot pouiiI~.luiwrv
hp-- inclraea I by right contpared 14, Has~ = 3000C (fig. 3). Moreooi'r. new asvrniinwtri
birand".s have emnerged onl account (if the formation of lintit point541 111 the asvtlittwetrif
btraneches at fta., 30000. via the intchanifim rweprrv'nmcted in fig. I (6,). Ani ess'ential
rcwnimin leature of all tife avsyinriuetrc solutions aI &lly Has < :10M (the c-orre".ponding
bifurrat tor diagrants at#- presented ill T). however. has been prem'rvefd also at Ha,.=
COW0( lther pairs tw'scelsivily form a cloutis curve intersecting the %yniumetric- bralciclrs
ill thn' corWspiondilg hiffurcation p xoint' (fig. 2. 31 illuxttrat* onily the( projectionis of %lit-h
cur~ve (In file svllllwt tic plane). lit tillsi seiiY'. the ANV'rltsnetrIC brancih"e call 6e' regarded
a% thr alti-ritati've stenairss of tramufor,,satimn of one of thlt syntinetric flows fill()ti aothle's
-kippinsag t heir runia t ottAking ptlace Ilit tilt-e sv 1littetric pilate'. rilt. examiples (if tilt-
%ttwalthilit contours of a~symniitrtr- solutions' at Bu,; = 60000 *,re pr eseitted Ill figt. )i.

Sitabilitv o f the. steatis solutionts h&- lit-ent %twired hy siritilatitig tilt teritiiiral .vvo
lutouat of the' hitswaried ,stn ' ci411 f lilt' gWVers~ijug (ft 44106ios resulting fron it di-tIurIbaitc
initrixuted into its initial coniditions. It if. worth Iw15i nioted that it nursis '4ign Irl f1K. 2A3
is. indicatiew of Olw preenice (of tilt- tegativ'e eigenal ivat in tilt set (if eigenivakluie% of tle'
%Vateint od linearis"I goveftarr ipeluat ions. As a contsueqsece. tilt- -,olution is itiecessaril
uinst~ile wit hin t he corres ataljg interval of Hal-. Isa splite of the. foirmattiont of tilt- five'-ceIl
flow Andt the' APgWArance' of ftsaii 'v new iauiltiple solutiotas as ft.Mis aiticreamId fronta 30000(
Ito 6001)(). the art of the stable steady flows At Ras = 60000 ha.' reinainedl qulalitalivel '
ilipi saitx' &% it was at lis = NXl). ' it particular. b'i-xides ajeynanietric branch .42 anid
-Ycininttric brasrirhs SI and N15 F at the sniall and the large Hur-. respectively. the only
"stabit' steady Hlow is re-presented Itv thbe short interval between L1 .1 Iarid B 174 of branchi
aI 15.

Thais for the.' thertal Ray, leigh nurmbhers betw'ern zero anad that. of hunit point L. 15. thlt
stable' solution is unique. aitld it is characterized !)% two v'erv weak end cells like the ones
in lilt. 2 (a) front TK. Two stable steady solutions coexist bet ween limit points L 15 awad
1.1 -1. the Re'Colt( ill the' a*fltllttriC ore-cell flow (see fig. 5 6). Between limnit point 1.14
andi bifuarcationt poitnt 1)10. the me( of the stable solutions comiprises also the symmetric
Otne-Cell flow frosic the stable interval of branch P11.5 (thcis flow is s9inilar to the slightly
asvinarcitrir octe-cell pattern icc fig. 5 r;. The latter flow becomes unstable for Raj, above
Bi 7. aiid m.so only two stable solutions are present he'weeuc B17 and BI. It the interval
lietws'ni HI arid B18 only tIt(- asymncantric one-cel* flow (branch A2) is stable. Whenl Ra',
is, irt-teame'd ahoy'' BIN, this solution exchanges ith stability with the syrrinetric one-cell
flow persisting til lo tile very large values of Ha,, (this flow is similar to the one in fig. 2
K font" TlK).

4 Discussion and conclusions
It v, iiiteresting that. Itl spite of the mcultiplic~ity of the flow patterns, there can nevertheless
lit- dixtiiigtisbedl Ieneric features of these flows. h;~ particular even bascd on the partial
re-%lilt% ptn~enied lce'r.. it can Ibe' noticed that when the bifurcationi paramneter approaches
it -iitmintial %alus' ;%long a brainchi. the trenid of thlt steadl' solution towardls havinig s0ome
4101A nillt itil. U111io4t stagnact . re ions. eithIer betweeni a pair of cells oi' between a cell and
Itheat'earbyv ecud wall,.a e la observed. Such regions c-art be identified either by' the

allfi- (t he141% ifCeluli motiont inlti( streainline patterns orby the absence of sig-
nmificantt distort ionis in tilht' constanti salinity lines. Trhese trendis are e'.ssacicated either with
III,' iradlutal .lsav and vanishing of otiii of I lie Pnil cells (of- them both. iii thle sytinnetric



CaS41). ()I with theC' shrinkitng of the existing cells either from One of the end walls (both of
Ihetuo or from vitch other a% Reel is decreased along the branch. As the- t hertual Rayleigh
mnumber is inicreaso-d to it% maximal valuies at a branch. however. the trenad towards 'either
givitig ris- t14) new cells or enlarging thle existing ones onl anl entire enclosure. so that the'
whole space' of tilt- cavity be takent up 1).N the cellular nuotioti. is tangibly displayed. Asa
cow"tisenette of stich a behavior, all the qteady solutions at Ra,1 ab)ove limuit point L3 are
characterizesd by the convective (('115 occitpying Ithe entire' emclosutre. The steadv' solutions
;mstessing flow regions t hat either are, practically stagiiant or art- chiaracterizeel I)%. he(
tuliot Hlo( the relattivel v very low intensitY c-an he founid st arting frontu the value of the'
thertnal R~ayleighu tunumixer slightly smualler Luaii that at L3. anid below the Hal- correspond.
inK to app)roxanatelv the- tiddle- of branch S.SI. such a region (or regions) art- prsemeit inl
alnH"t all t he molution-s. However. apart front the onie-, t wo. . thire'e. and( four-cell flows
obaer~ed at Ila., < 34J0(JO. the- -At of the .eohautionas without thlt stagtnant region com~prises
aulme tihe- symmte'tric ande asymmietric five-ce-ll flow patterný..

1Thr. flejpttnl'tt(( of th pesen'5tce of d sitagtuatit flow region itn a Mtead% soint lol mil
whe-t et Roil is blokw or above a crit ical interval (tile- onle- bet weeds Ihr. nielelei of .'..l
dum. It I i reminttioeti I of t [it -succvessive- an it II I- IIIIIIIt aten itit If If. of Ivet~f for:II uit I I"I
cibse~rvdil tit previous %wteaeie"- behmmv and above atn appropriatelY deftised Hayle-igh uuusuit

bet. rqespowltivel-y.. It is Int~ere'stinag thaut the stabilit v re11sults described ahpoyf. exhliiteel so
laixt t itni 44alevs of thle itnstabilities that like, steaýl% flows, could event uall~ ' he long I iII

application to thet expel Iltuiental setl of Le e It al. 14%.9(. for muan ' hours) ob~servedl III the
e'xpermittett I hus. even Allowing for possible qualitative' chatiges. ill t lhe Steady solutionit
structure alnd for variation of the growth rates of the Instabilities as the salinity %IaylIeigh
number is 'mirther inucreased up to the very larie values used in the' previous stutdies. it
nt-verthelews appears that tilt- featuire of itsa ie stead% flows are of basir significance'
for the understatnditng of t hu nature of the -stt~ cessive" and itutnetsflow reginm-,
obise'rvedl in the past.

References
[11 Chen. C. F.. Bri~gs. D. G. andt Wirtz, R. A. (1971) Stability of thermal

cotivectiotn in a saliitty gradient (lite' to lateral heatitng. tnt. J1. Heeal AIas.% Tlvmu'fer
Hi. .57-65.

[2] Hart.. J. E. (1971) Ott midewa~'s diffusive itnstabilitvy. J. Fluid M~ie. 49. 279-288.

p[3) Kvller. HI. B. (1977) Numerical solution of bifurcation atid tionlinear eigenvahlua

ptmobleitts. ItI Applicaltwns of btfur-caltort the ory. (ed. Rtabituowitz. P.11.). Acadetun
P ess: New York..

[~ii Lee'. .1. W. and H 'yunn. J. A. (1991) Douible. ciflfisivq, (ontv(ctjtiol ill ai
(avit.y uinder a vertical solutal gradient and( a horizontal tetmperature' gradin'ti
ju0. J. lthat Alas, *ITrivisfir :14. 2423-2-127.

~]Lev. J. X*.W Hyuu.i A T. and IKaxg. Y. S. (1990) Confined natural cotivec-
tion due to lateral heating in a stably stratified solution. Int.' J. He-al Ataasx Tianxfrr
133, 869-875.

6]Thorpe.* S. A., Hut~t, P. K. and Soulshy, R. (1969) TIhe effect of horizontal
gradlient~s onl t herniohialine (otlvvction. .1. Fluid Mrch. 38, 3175-400.

[7] Tsitverblit. N. (1994) Bifuircation p~hetnom~ena itt cotnfined tlt'rmtosolutial cut 1 ec-
tioni with lateral heating: commrencemuent. of the double-diffusive region. Sublm~it~ted.

[s] Tsitverblit. N. and K'it, E. (1993) The ntultiplicitY of steady flows itt cotnfitned
cloiile-diffusive' convect~ion with lateral heating. Phyjs. Fluidsý A1 5(4I) 1062- 1061.



Ll

L2 

L I

Figure it Uhe mechanism responsible for promotion of the soalution multipLicity with the second parameiter, Ras, being
Varied. ta) the am"anegs~ Of two ulmit points via the formationi ofa non-degienarate hysteiresis point; (b) the emergenc, of
a single Limit point due to the exchange of the criticality of a symmetry-breaking bifurcation point; (c) the emergence of a
pair of symmnetry- breaking bifurcation points via ther formation of the i"l of asymmetric solutionsa at a&symmetric solution
branch.
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Figure 2: The schemaitic diagram of the variation of a measure of the symmetric cerinponent #(X) of solution VPctor X with
thermal Kayleigh nit-mber A* r; Rd e3 O . .00 . SI.SI (the solid Lines) are a% inmevitric branches. Al1,.... A31 (the dashed
ilnes) are asynoukieeic branches. Li.L36- limit points. BI....SB1-symoinery-hreaking bifurcation points The plus

and minuis signs designate the signs of the Jacobian determinant at the corresponding intervals.
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BOUNDARY LAYER AND SCALING PROPERTIES
IN TURBULENT THERMAL CONVECTION

F. Chilli(&), S. Ciliberto(°, C. Innocenti(M), C. Laroche(*)

(*) Ecole Normale Supdrleure de Lyon
Laboratoire de Physique, C.N.R.S. URA1325
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(o) C.R.T.B.T., 25 Avenue des Martyrs, 38042 Grenoble, France

(0) I.M.G.- L.E.G.I., B.P.53, 38041 Grenoble, France

Abstract: We describe an experiment which has been designed to measure
both spatial and temporal features of turbulent thermal convection in a fluid laver
heated from below. Specifically we have studied the dependence of the heat irow
versus the Rayleigh number, the thermal boundary layer profile, the temperature
probability distribution function, the frequency and wave number power spectra.
Scaling exponent of temperature structure functions have been evaluated using
the recently introduced method of Extended Self Similarity.

(1) Introduction
Many properties of thermal convection in a horizontal fluid layer heated from

below are not yet well understood. One of the most important is the dependence
of the Nuaselt number, that is the non-dimensional heat flow, as a function of the
Rayleigh number R4 - agd'AT/yX, where a is the thermal expansion coefficient
of water, g the gravitational acceleration, d the height of the cell, AT the temper-
ature drop across the cell, v the kinematic viscosity and X the thermal diffusivity
of the fluid under study. The dependence of Nu versus Ra is certainly induced by
the boundary layer shape and from the characteristics of the large scale circulation
11,2,31. The study of the boundary layer is not only important to determine Nu
but also the statistical properties of the temperature field Inside the bulk which are
strongly influenced by the fluctuations near the walls[2,3 41. Indeed it has been
observed (11 that the probability distribution functions (-.D.F.) of temperature
measured in the center of the cell presents, at Ra > 107, exponential tails which
are related to a logarithmic dependence on z of the r.m.s. fluctuations closed to
the boundary layerj2,3,4].

Finally an other important problem in turbulent thermal convection is the
scaling of temperature and velocity fields. In the experiments of ref.5,6 It has been
found that the measured scaling exponents were consistent with those redicted
by Bolgiano and Obukhov[71 for turbulence in stratified media. However n several
icment papers[8,9,10] it has been shown that this scaling could be possible also in
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thermal convection. In contrast in ref.11 the standard Kolmogorov law K-51 3 is
predicted for the temperature wave-number power spectra and it has been argued
that the exponent -7/5, found in the experiment (5], could be valid only for fre-
quency spectra but not for wave-number spectra which should present the steeper
power law at K-5 / 3 .

We have investigated all these effects in an experiment on turbulent Rayleigh-
Benard convection. This experiment has been designed to measure both temporal
and spatial features of turbulent regimes in a cell filled with water and heated
from below. The description of the experiment can be found in ref.2,3,13. thus we
remind here only the main features. The average temperature of the cell was 45*C
corresponding to a Prandtl number, Pr = v/X of about 4. By changing the height
d of the cell from 6.5cm to 40cm and we were able to cover the interval of Rayleigh
numbers Ra from 105 lo 1010. As the horizontal length of the cell was 40cm, the
aspect ratio L/d was changed from 6 to 1. Local temperature measurements were
done with a small thermocoup!e whose position could be changed in order to test
different regions of the flow. Spatial measurements were done with a laser beam
sweeping technique described in previous papers (see ref.2,3 and reference therein)
and by changing the thermocouple position.

1.6 0.16

e~g :2 a 0.12
; e.ee

I-- ---•.~0 oil.e,

-0.4 0. 04

Z( MM)z( "

Figure 1: a) Dependence of OT on z for different values of Ra, o Ra =
5. 107, * Ra = 108, A' Ra = 2 108. The continuous line correspond to best fits
done with eq.1. Insert: deperdence of log10 0T on z3, the straight lines show the
accuracy of the fit.

b) dependence of the root mean square of the fluctuations of T as a function
of z for two different values Ra, o Ra = 10', A Ra = 2. 108. The continuos lines
are logarithmic best fits for z > z,.

(2) Boundary layer

From our optical measurements we can also compute
8.T(z) -< <. T(x, z, t) >,>t, that !s the z component of the temperature

gradient averaged on an horizontal plane, and the root mean square fluctuations
6t(z) =<< (T-_ < I >C) 2 >.>1/2 where < . >, stands for average on the
variable u. These two filIds t9,t and 6t are reported in fig. 1 as a function of z for
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different values of Ra. Only the lower part of the cell is shown. Notice that, for
z > 5mm, 8.f is slightly negative and it reaches 0 once again at z > 20mm. This
indicates that a small thermal inversion is present at Ra = 10i. The continuous
lines in fig. la are a best fit done with the boundary layer shape proposed in ref.11:

5T oc Bexp[(-z 3 /9xrx)(OT ~ (- x )1/3()

where B depends on boundary conditions and r is a characteristic time such that
Nu oc Br-1 / 3 [3]. The agreement between the measured temperature derivative
and the fits is good. The accurauy of the fit is clearly seen, in the insert of Fig.la,
where log 19T versus z3 is shown. We realize that the fit deviates for z > z,, where
z,, is the viscous sublayer depth. More details about the implication of eq. 1 can
be found in ref.3.

In Fig.lb, where the r.m.s. of temperature fluctuations is shown, we see that
the strongest fluctuations are close to the boundary layers as it should be expected
because of the hot plumes coming out the boundary [1,2,3]. The continuous lines
is a logarithmic best fit which is the reason for the exponential tails observed in
the temperature P.D.F. observed at Ra > 10i [2,3,4].

The knowledge of 0.t at the bottom plate of the cell is also useful to measure
the heat flow with the optical technique in addition to the standard calorimetric
one. The results are shown in ref.3.

(3) Scaling laws in turbulent convection

Several experiments [5,6] have shown that the temperature and velocity
fields present scaling exponents which agree with those predicted by the Obukov-
Bolgiano [7] arguments for turbulence in a stable stratified medium. This means
that the temperature and velocity spectra should scale as K-11s and K- 1 1 1 5 re-
spectively.

However many experimental measurements are done just in a single point,
thus it is important to study the relationship existing in thermal convection be-
tween frequency and wave number power spectra[13,3]. We found that when the
mean recirculatlon flow, inside the cell, is stable, the frequency and wave number
spectra coincide by simply using Taylor hypothesis. In contrast in the points of
the cell where the mean flow does not exist frequency and wave number spectra are
different. We have also noticed that, because of the instabilities of the mean flow,
scaling is observed better in spatial measurements than in temporal ones. Thus
the possibility of observing a scaling in time measurements is related to the mean
flow stability. This feature has been also observed in recent numerical simulations[14].

All these problems and the fact that, at very high Ra, the standard Kol-
mogorov scaling could be indeed observed make a clear evaluation of the scaling
laws in thermal convection rather difficult. Furthermore the distinction between
the Kolmogorov and the Bolgiano scaling can be influenced also by the intermittent
corrections. The best way to study this problem is to compute the temperature
structure functions of order p, that is

<1 6T(r)P 1>=< IT(x + r) - T(x)IP >

and then to use Extended Self Similarity (E.S.S.)[15] which works very well even
for very small Reynolds number, that is the case of our experiment. It has been
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recently shown that E.S.S. works also in thermal convection[16]. E.S.S. consists
in finding the scaling laws using structure functions of different orders:

<1 6T(r) IP>=<l bT(r) I>V

Specifically it has been shown[16] that ý(2) is 1.4 for the Bolgiano scaling and 1.7
for the Kolmogorov one.

4.0 . - . . 3.2

(o)b)
A3.6 3.0,* * / (b)-9 I

o ,**, 2.6
o 2.5 ** ,4

2.0 d/r, 2.6

/ 6T(L,)

40 80 1.20 1.6 2.8 2.48 2. 0 3.2 3.4 3.6 3.8
La 0 (PA, ) Lq (I 6I

Figure 2: Temperature structure functions at Ra = 4. 101 obtained from
the thermocouple in a single point and uisng Taylor hypothesis.

a) Temperature structure functions < 16T(r)]P > as a function of r for p-1
*, p=2 o and p- 3 A. The Bolgiano length Lb and the integral length scale d are
also indicated. b) Extended self similarity between p=2 and p=1. Notice that the
Bolgiano scaling indicated by the solid straight line, with slope 1.4, stops exactly
at < 16T(Lb)I > as expected. The dashed line has a slope of 1.7.

In Fig.2a) the structure functions for p=2 and p=1 are reported whereas
in fig.2b) they are shown one against the other. A clear scale is observed with
f(2) 1.4. The structure functions of fig.2 have been computed using time mea-
surenents and then making used of Taylor hypothesis to transform them in spatial
measurements. In fig.3 we show the structure functions directly measured in space
by measuring the moments of the temperature difference between two points at a
distance r changing the thermocouple position. A rather clear scaling Is observed
as a function of the distance r (fig. 3a) and when a structure function is drawn
as a function of the other fig.3b. The results repported in fig.2 and 3 clearly show
that the Bolgiano scaling is the correct one at least at small R,. It could be not
in this way at different Prandtl number and higher Ra see also ref.3.
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Figure 3: Temperature structure functions at Ra = 1010 obtained by direct
spatial measurements

a) Temperature structure functions < 16T(r)IP > as a function of r for p= 1
A and p=2 *.

b) Extended self similarity between p=2 and p=1. The Bolgiano scaling is
indicated by the solid straight line, with slope 1.4. The dashed line has a slope of
1.7.

(4) Conclusions

Using an experiment on turbulent thermal convection which allows to mea-
sure both spatial and temporal features of the temperature field, we have shown
that the conjectures of ref.5 on thermal boundary layer are correct. We have
shown that the spatial P.D.F. of temperature fluctuations has an exponetial tails
which implies a logarithmic dependence on z of the fluctuations amplitudes. Fi-
nally using E.S.S. we have clearly show that in the range of Ra number used in
our experiment the appropriate scaling is the Bolgiano one.

We acknowledge useful discussion with R. Benzi.
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Abstract

Preliminary experimental results of Rayleigh-136nard convection in the strongly
turbulent regime are presented. The liquids tested are mercury (Pr = 0.025) and
water (Pr = 7). The experiment cover a range of Rayleigh numbers between 1.6 x
1(}7 < Ra < 6.3 x 109. The convective cl.&..aber consists of a cylindrical cell of aspect
rat- -= 1 ( 1- di . In the turbulent regimes it has been measured the heat
flux. the temperature fluctuation spectra and the structure of the mean flow. For
Ra > 2 x 10' a transition to a new turbulent regime was observed with considerable
increase of the Nusselt number, A decreasing of Nusselt with decreasing Prandtl
number is observed.

1 Introduction

An horizontal layer of fluid subjected to uniform heating from below and cooling from
above is a classical (unstably) stratified system. The strongly turbulent regime has been the
subject of numerous recent investigations [1] [2]. These experiments have been performed
at Prandtl number close to unity (in helium or water) and the influence of this parameter
has been little explored. Convet tion at low Pranjtl numbers has been carefully investigated
near the onset of unstea0" motions [3]. [4], but the strongly turbulent regimes seem not to
have been studied since Rossby [5] and Globe & Dropkins [6]. In the present investigation.
we extend these results to a wider range of Rayleigh numbers, and compare them with
experiments in water. Fu,-thermore, we investigate the structure and dynamics of the
inean flow which is spontaneously produced in such Rayleigh-Benard configuration.
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(a) (b)

Figure 1: (a) Test apparatus, (b) Arrangement of nickel-teflon thermistors in tile heater
and cooler plate.

2 Apparatus and Experimental Procedure

A detailed description of the cell can be found in [7] and will be published. Here we
give onily its main characteristic. The test chamber is a cylindrical cell (Fig. 1) of internal
diameter and height 21.3 cm. Both plates are in copper 5 cm thick, coated with nickel (
50gim thick)to avoid amnalgamation with mercury. The cell is thermally insulated from the
outside by neoprene layers, and surrounded by a thermal screen to minimize heat losses.
The bottom plate is heated with a constant power by electrical resistances. forming a
double spiral to avoid magnetic effects on mercury flows. The upper plate is cooled and
thermally regulated by a water circulation. For measuring the temperature at the upper
and lower boundaries of the laver, boreholeL; are sunk radially into the copper plates and
calibrated thermistors are inserted. The depth of the boreholes is 7cm and distance of the
boreholes tips from the plate surface is 3 mam.

Three different sets of data have been obtained: the heating power, tile temperature
differences across the cell as function of time at six positions and local temperature fluctu-
actions inside the flluid. These are obtained from the resistance of a platinum film. 250pin•
long, coated on a small wire, of diameter 25pm, electrically insulated from mercury by a
thin quartz laver. (it is a T.S.I. hot film probe used with a small current, 10 niA, producing
negligible overheating).

We study the permanent flow regime for different vaeues of thie heating power.

and coler late
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Figure 2: Nusselt iirrsus Rayleigh in water and mercury

3 Heat transfer measurements
We first determine the temperature difference AT between the bottom and top plates as a
function of the heating power. This is represented in non-dimensional form by the Nusselt
number ( Nu = "o'aI heat flx _) versus the Rayleigh number Ra. In fact the temperature
in the top and bottom fluctuates in time with fairly large amplitude, especially in mercury
(20% of AT), and a time average is performed (over several hours). Also a systematic
horizontal temperature gradient appears in each plate. in relation with a big convective
roll at the scale of the whole cell. as discussed in next section. Thus a spatial average in
each plate is performed in order to get the mean temperature difference AT. The results
are represented in Fig. 2 in the case of water (Pr= 7) and mercury (Pr=0.025). A good
fit of the data is provided by the following formula

Null, = 0.164Ra

for water in the range 3.7 x 10' < Ra < 7 x 109

Nun9 = 0.077Rao

for mercury in the range 1.6 x 107 < Ra < 2.7 x 109
Our results with water are in excellent agreement with precedent works [91. Ourn values

of N, for mercury, extrapollated to lower Ra. are about 1.5 tiimes lower than the result
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of (G;lobe Ik)ropkiis 6) lItobaint.d in a (-I[ withI a,4ije.t ratio :1.8 or 2). 1h1 range of Un
is, not ulflici.nt t (,(Iimingui-.,h between a 2/,7 pow.e, and tbr I /3 power assunied( ill ea rlier
I li•oriem. Nevert hele.'s. the lower valu" of ,ij for lower Pr is cleatly establlshe(d. This is
in agrviinient withI similar comparisons ziade at lower ha 1611.1. IHowever this result is in
(oiitradict ion wit i t elic itiadlI of Slihrailniaii & Siggia [81, which has been however successfull

in several other predict-ions [9]. [II0]. Ily -.ontrast, it agrees with the, .arlier theory of
lKraiclian i1i1, [I, Further experimiental liieasureliinelts are neededt ti better discriminate

Ibetween the dilferent. tli.hries, and maay %he suggelst new onles,

hi the case of m]ercury. a very sharp incr-ease of Nu is obseiveul near •a :- 2.1 x 105". This
could correSp)ond t, a transit]ion expected whena the viscous boundary laver becomnes ,. Iinmler

than the thernlai boulndary layer (21. Not ice however that this tralisition is observed ]iear

the niaxiniU]m 1a tihat we call reach with our apparatus, and we have difficulties in rep)ro-

ducing the data (by contrast the results at lower Ri are quite reproducible). Investigation

is in progress to clarilýy this problemn.

4 Dynamics of the mean flow

The spontaneous formation of a large convective roll. at the scale of the whole experimental
cell, hr.s been noticed by previous investigators, and is an important ingredient of the
model by Shraiman and Siggia [1]. We show here that. this so called mean flow has in fact
a complex dynamics on a slow time scale. As stated earlier, the temperature distribution
in the bottom and top plates is a convenient track of this mean flow. The temperature
records at. two locations at the bottom and tops plates, are shown as function of time in
Fig. 3 at R" L- 1.2 x 10". We notice fluctuations on the time scale of several minutes,
and switches between two regimes persisting during one or several hours. The fluctuations
at two diametraily opposit locations (probes 2 and 6). are opposit, so that these switches
can be interpreted as a reversal of the mean flow (The negative crosscorrelation is also
an indication that the observed fluctuations are not linked with the thermal regulation
system). The dipolar structure of the temperature distribution on each plate is confirmed
by the crosscorrelations between the different probes (Fig.4a). Surprisingly enough, this
correlation is not only verified for the major reversals, but also for more rapid fluctuations,
It appears indeed in Fig.4b that the crosscorrelation strongly decreases for time intervals
of a few minutes, so that a significant part of the crosscorrelation comes fronm fluctuations
oil that time. Therefore the "mean flow" undergoes a quite complex dynamics that has to
be further investigated.

5 Temperature fluctuation spectra

The tihird objective of this study is to explore the scaling laws in temperature fluctuation

spectra (S,)(k) -. k4). once fully developed turbulence regimte is established. All these
spectra were made at the 1/4 of the total height from the bottom.
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The spectral data of the present work, show in water (see Fig. 5) a well defined 7/5
law, in agreement with the scaling of Bolgiano and Obukhov [131 [121. This confirms
previous experimental works. On the other hand. the experimental findings in mercury (see
Fig. 5) don't show a very clear scaling law. The spectra are however closer to Kolnogorov
scaling, as expected from an estimation of the respective fluxes of temperature anld velocity
fluctuations [9].

6 Summary

"IThese, preliminary experimental results show that convection at low Prandtl number.
presents several interesting and differents feature with respect to convection in fluids with
Prandtl number of order one, for example the transition of Ntisselt rrsisit. Raylcigh in
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mercury for R, > 2.1 x 10'I (which remains to be confirmed).
Furthermore. t.lOw strong temperature fluctuations induced by tie fully develop(d colt-

vection allow us to to show that the previously observed "nzean flow" has a ,'o,1phex
dynamics on long time scales, involving fluctuations and reversals.

Although, at the moment, we cannot deternmine the exponent of Nu versus Ha with high
accuracy. we can affirti wit h confidence the observed dep)endence oi the Prandtl nurnber.
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ABSTRACT
One of the simplest experimental systems which exhibits Rayleigh-Taylor instability is that
where a homogeneous layer of fluid overlies a similar layer of less densc fluid. Initially the
two layers are separated by a horizontal barrier. The instability starts when the barrier is
removed. Quantitative measures of the spatio-temporal velocity and density structure of the
flow have been made using a range of image processing techniques. These data are then
compared with theoretical and numerical predictions of the development of the instability.

This paper addres-.ses the question of how closely these simple experimental flows relate to
idealised numerical simulations. Such simulations predict growth rates significantly lower
than those observed in experiments. Three-dimensional numerical simulations typically utilise
a horizontally periodic domain and a spectrum of random initial perturbations. The
destabilising acceleration is turned on at the same instant everywhere in the domain. In
contrast, experiments are performed in a finite domain with solid sidewalls. The withdrawal of
the harrier introduces strong. coherent perturbations to the initial state of the fluid and the
finite time required to remove the barrier introduces a delay in the initiation of the instability
across the tank. The structure and effect of these coherent perturbations. the delay in initiating
the instability and the coupling of the flow with the boundaries of the tank arc analysed and
their influence on the subsequent evolution of the flow determined.

1. Introduction
Along with Kelvin-Helmholtz instability. Rayleigh-Taylor instability is one of the

fundamental mechanisms through which mixing occurs in stratified flows. For miscible fluids
the instability develops whenever fluid of a greater density overlies fluid of a lower density.
Such unstable stratifications frequently occur in stratified flows due to gravity currents.
breaking internal waves, buoyancy sources and a variety of other mechanisms. A thorough
understanding of the instability in relatively simple situations will aid our understanding of the
mixing events which occur in more complex flows.

i revious experiments have used a range of techniques to produce the initial unstable
density stratification. At the high technology end rocket motors (e.g. Smeeton & Youngs.
1988) and linear electric motors (Dimonte et id.. 1994) have been used to accelerate cells

containing initially stable stratifications downward at IO:gt. Accelerations as high as 104g
(e.g. Zaytscv et al., 1994) have been achieved using pressurised gas. Attempts to simply invert
a stable stratification (e.g. Voropayev c al.. 1993) are hampered by Kelvin's circulation
theorem requiring the body of the fluid to remain irrotational and so the initial unstable
interface is not normal to the gravity vector.
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In this paper we report on some reSuts10
obtained using a %impkc barrier of' novel

* design (Lune-Serff. 1989, p. A7: Dulziel

fluid. Previous workers (Linden & Redondo.

1991) have seen that a simple. solid barrier
W leave% behind it a wake which has a long-

term influence on the tlow,
The harrier and tank used in the current

Sexperiments arc sketched in figure 1. The
harrier consist-, of' two sheets of' stainless

- steel (dark grey) separated along the edges hy
two strips of' the same material to form a

F1iIHlm 1: Schernitic if experirnentul apparatus showing, tI ttb.To~ee fnlnfbi
the mriginaI solid barrier, long. lttbTopee l yo lbi

(light grey) puss through the centre (if this
tube. At the inner end of the harrier one piece of the fabric is folded buck onl itself and laid on
top of the barrier and fastened to the end wall of the tank through which the barrier passes.
The second piece of fabric returns along the lower side of the barrier to be fastened to the end
wall, As the barrier is withdrawn. any unsupported fabric is removed through the centre of the
barrier. The net result of this arrangement is to eliminate any shear between the barrier and the
fluid above and below. All the shear is confined between the barrier and the nylon fabric.

Unfortunately this barrier arrangement is not ideal. In section 2 we investigate details of thec
perturbation introduced by the barrier, while in section 3. we present a gross qualitative
comparison between the experimental flow and numerical predictions of Youngs (1991.

................... ...

FiGL~kP.2: Velocity veiciors(urrIow% and velocity potentiul igrvy %Laic) for widxclt ba hrrier removal (a 1W4 it
withdrawn. Nh 5011t withdrawn.

2
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1994). In section 4 we discuss some of the details of the structure of the concentration field
and in section 5 the velocity fields. The main conclusions are highlighted in section 6.

2. Initial perturbations
While the novel design of the barrier outlined in the introduction removes most if not all of

the shear between the barrier and the fluid above and below, it still introduces significant
perturbations to the flow. The primary mechanism for these perturbations is the removal of a
finite volume from the tank. and the associated need for fluid to move to replace the void left
behind. As the working fluid (water stratified and refractive index matched with salt and
alcohol) is essentially incompressible and the tank rigid, it is necessary to have a free surface
which must move down as the barrier is removed. The barrier measures approximately 2.4mm
thick (including the nylon fabric) and so the free surface must move down by this amount.
Note that the potential energy released by the downward movement of the upper layer exactly
balances the work done on the barrier by the hydrostatic component of the pressure during the
removal process.

As a first approximation to the flow produced by the removal of the barrier we may assume
two-dimensional, irrotational flow and utilise potential flow theory, For the present discussion
we take the free surface to be flat and at constant pressure and toe walls and barrier to he
impermeable. At the end of the barrier the horizontal velocity is equal to the speed of
withdrawal. With these boundary conditions time enters the problem only through the distance
the barrier protrudes into the tank. We may thus replace the moving barrier by a fixed barrier
and fluid sink.

This model for the flow induced by the barrier has been solved numerically using a
multigrid technique for the velocity potential cp. Figure 2 plots the velocity (arrows) and
velocity potential (grey scale) for the perturbation at two different barrier positions. Note that
the vertical velocities near the trailing edge of the barrier are much stronger at early stages in
the withdrawal process, This results in an overall tilt to the interface as the barrier is
withdrawn.

If the fluid were unstratified and truly irrotational then the motion would stop once the
harrier was fully withdrawn. However rotational flow will exist, particularly in the vacinity of
the trailing edge of the barrier where the nylon fabric is pulled around the corners of the
stainless steel sheets. These rotationul aspects to the flow introduce additional fine-scale
motions plus enable the tilting process to continue even after the barrier withdrawal is
complete.

The fine-scale rotational perturbations are at a length scale an order of magnitude greater
than that associated with the linearly most unstable mode. They also contain significant
energy, swamping the linear growth phase of the instability in a stratified run, Coupling
between the tank walls and the large scale tilt due to the removal of a finite volume draws
energy from the stratification to set up a large scale overturning motion. The direction of this
large scale overturning is always the same and is consistent with the potential flow model.

3. Qualitative comparison
Figure 3 presents a qualitative comparison of the present experiments and the numerical

simulations of Youngs (pers. comm.). In the experiments the lower layer is dyed using a
combination of food colour, textile dyes and fluorescent dye (sodium fluorescein) io produce
an opaque, shiny interface between the upper and lower layers. The results of Youngs are from
a direct numerical simulation of the compressible Euler equations. The simulations were run

3
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at low Mach number to minimisc compressibility effects. An attempt V is made to model the
time lag between one end of the tank and the other as the barrie, was withdrawn. While while
noise and a wave-like perturbation comparable with the ex"erimental fine scales was
introduced to trigger the instability, the barrier was assumed to be infinitely thin and shear
free.

The experimental and numerical flow are clearly similar. While the length sc:-!s achieved
differ •for the numerical flow they
depend partly on the spectrum of the
noise introduced to trigger the
instability), 'he individual structures
are very similar and follow the same
general development.

4. Concentration field
4.1 LIF IMAGES

Figure 4 shows the evolution of the
instability as a sequence of LIF
(Light Induced Fluorescence)
images of the lower half of the tank.

tu) In these experiments sodium
fluorescein dye was added to the
upper layer and the flow illuminated
(from below) by a sheet of light
approximately I mm thick (over the
entire depth of the tank) from a
300W mercury arc lamp. The flow
was imaged using a high resolution
monochrome video camera
equipped with a mechanical shutter

(b)

(0) id)

IKt'kF.i1 3: Perspective view of the curly evolution of the instability for experimental and numerica'l flows.
"Tlime, are measured from the start ofthe withdrawal process. Experiments: (a) 1=2s. ih) t-=3-,. (Ic t=4s,.

Numerical simulation: (di t=5,

4
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FIGURE 4: Corrected LIF images showing the evolution of the instability. Times as indicated.

(to ensure simultaneous acquisition of the even and odd video fields). The video signal was
recorded on a Super VHS video recorder for later processing using l1)ih!llmage, an image
processing system developed in DAMTP over the last five years.

Image processing of the raw images was necessary for three reasons: the intensity of the
illuminating sheet was not uniform along the length of the tank, the individual light rays
attenuated due to absorption by the fluorescent dye. and the light rays were not parallel. The
intensity at the edges of the light sheet used for the experiment in figure 4 was only
approximately 20% as bright as that in the middle. As a result, the image correction procedure
has apparently enhanced the noise content of the images in these regions.

In the very early stages (figure 4. t=2s) the fine scale perturbation introduced by .he nylon
fabric at the end of the barrier is visible as rapid roll-up on a length scale of approximately
10mm. In comparison, the linearly most
unstable mode (e.g. Chandrasekhar, 1961.
p. 447) for this density ratio

(,,,,,,,., /p,.. = 1.006) is approximately
2mm. There is up/down some asymmetry
of these structures, presumably due to the
net downward motion of the upper layer.
Perspective views such as those in figure
3 suggest that these initial structures are
three-dimensional in nature. The
structures rapidly interact and combine to
produce successively larger scales, a
process which continues until the flow Fl(t'jIt. 5: E-nsemble mean LIF image at tr= 11

5
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extends through the entire depth of the tank (t= 12s).

The large scale effect of removing a finite volume can be seen as the more rapid growth of
the structure at the right-hand wall of the tank. The growth of this structure leads eventually to
a clockwise overturning motion on the scale of the tank. This feature is consistent throughout
these experiments as can be seen from figure 5 which represents the ensemble mean LIF field
from 25 individual experimental runs at = 1 2s.

4.2 GROWTH RATE

It is possible to calculate a wide range of concentration statistics from the LIF images
presented in the previous section. Here we shall limit ourselves to the growth rate and fractal
dimension.

Figure 6 plots the ensemble mean (25 runs) temporal evolution of the penetration of the
upper layer into the lower half of the tank. The penetration depth is defined as the depth where
there is at least 5% upper layer fluid in the central 50% of the tank. From dimensional analysis
we expect self-similar penetration with the penetration depth h scaling as

It = (X A_-- gt2 +h/1, (l)
2 p

where AP = = P(PM,,,,,. +, 1 ), g is gravity. /;, is the effect of the small scale

perturbations and ot is some constant of proportionality. This scaling law is plotted as a solid
:ine on figure 6 with a = 0.05. This is in broad agreement with the earlier experiments of
Linden & Redondo (1991) who were restricted to density ratios of' greater than 1.06 (i.e.
density differences ten times greater than the present experiments) due to the wke from their
simple barrier. The current growth rates also compare well with the X=O.06found in the
rocket experiments of Smeeton & Youngs 11988) and fall within the range of values found in
direct numerical simulation (ox = 0.03 - 0.05).

If we select only the experiments we 0.240 /
thought were the best in the sense that 0.2200 2(X)

everything ran smoothly and there were 0 2 o
no other undesirable influences, then 0 0.
our estimate of the growth rate could .2 0140 /
be reduced to around a = 0.04. On the 0.120

o. 10wo

other hand. if we were to look at the 0.080
growth rate over the entire length of the o.06o)
tank, we wt,uld find that it was 0O(O
dominated by the rapid growth down 0.020

0.000

the right-hand boundary due to the D 0 20 4.0 8O0 1 0 120 (4 0 1 il 2O) 1 2 1 1) 2 0 2(4

flow imparted by removing a finite Timc (r)

volume. Clearly then there is still some FHLtRE 6: Penelratotj depih of mixing region for ensemble of
doubt about the true value of o( for experiments (x) and simllrity law (line i.
these experiments.

There is alo uncertainty about the growth rate calculated from numerical simulations.
With gradual improvement of the numerical codes and increase in resolution, the he.Vr e.stimate
for thit growth rate has dropped from 0.05 (Youngs. 1991) to 0.93 (Youngs. 1994).

6I
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4.3 FRACTAL DIMENSION
It is still a subject of debate as to how useful a knowledge of the fractal dimension of a
material surface is in understanding the dynamics of the flow. We shall not enter this debate in
this paper other than to note that the fractal dimension is a useful mcasure of the degree of self
similarity of the fine scales in the flow.

Figure 7 plots the temporal evolution
of the fractal dimension of the 50%
concentration contour for an ensemble of
25 experiments. The three key features of ,
this evolution are the initial growth phase 1 5o ++
for t<5s, the self similarity maintained up I + +
until t=14s and finally the gradual : 1 ,

increase in the dimension at later times.

Comparison with the LIF images
presented in figure 4 shows the initial IN.

phase corresponds to the distortion to the .... n,, ,,, i,, , ,0 ,1, 41 1,,) [Nil 2011 220 240,,ý06, ,1 311.0

initially planar interface (D= I) due to Time it)

perturbations introduced by the harrier FIGUt)RE 7: Evolution of fractal dimenson.

gradually interacting with each other and
the unstable stratification. From approximately t=4s the self similar development described by
11) is established. While the boundaries of the tank start to be important by t= 12s, it is not
until somewhat later that we see a response and the development of more highly folded
concentration contours. The numerical work of Youngs (1994) shows a similar time lag before
the onset of self similarity (in this case characterised by the growth rate following equation
(1))

In the absence of molecular diffusion of dye and salt, the fractal dimension would continue
to increase towards D = 2 as the internal wave field continues to break. With diffusion, the
increase in dimension due to folding will eventually be balanced by diffusion, with the
dimension then slowly decreasing towards unity (the final state will be a continuous density
stratification with the )0% concentration contour corresponding to a horizontal surface).

6. Conclusions
In this paper we have shown broad qualitative agreement between a series of simple

laboratory experiments and sophisticated direct numerical simulations of classical Rayleigh-
Taylor instability. While the quantitative comparison is less favourable. we have shown that
the discrepancy between the predicted and observed development may be explained in terms
of the initial perturbations to the flow produced by removing the barrier initially separating
these two layers. For these perturbations to have their full impact on the flow, it is necessary
to consider the coupling between them and the tank walls.

We have demonstrated that the flow achieves a self similar growth phase despite these
initial perturbations. In addition to thc t2 growth rate ant thc constant fractal dimension
presented in this paper. concentration fluctuation power spectra and the evolution of' the
velocity field also show self similar behaviour.
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Abstract

In this paper we investigatt the Rayleigh-Taylor instability of a two-fluid layer system
under a general rotation field. Gravity is always perpendicular to the two layers. It is found
that, in an unstable situation, an increase in the densities difference increases the stable
angular area of wave propagation, measured with cespect to the horizontal component of
rotation. However, it is found that the vertical component of rotation decreases not only
this stab'e angular area but also the range in which the horizontal component stabilizes the
system, according to a previous research by DAvalos-Orozco (1993). This decrease in stable
area comes along with a decrease in the growth rate. It is shown, by numerical analysis of
the eigenvalue equation, that the stable angular area disappears after the non dimensional
vertical component of rotation attains the value .33, approximately. Exact and approximate
analytical results ate calculated to understand the physics of the numerical results.

1. Introduction

The Rayleigh-Taylor instability (RTI) has been the subject of recent research due to its
importance in stratified systems among which planetary and stellar atmospheres are two
examples. In order to describe realistic situations, different properties of the fluid have been
included in theoretical investigations. For instance, Chandrasekhar (1955) included the effect
of viscosity and Reid (1961) the effects of both viscosity and surface tension. The fluid can
also be supposed as being made of a number of layers or as being continuously stratified.
For a review see Chandresekhar (1961). Recently, important advances have been attained
from the theoretical point of view by Yiantsios and Higgins (1989). A new and original
experiment has being done by Fermigier et al. (1992) which gives a light in the development
of the RTI not seen before.

The effect of external forces has importance mainly in planetary and stellar systems.
Coriolis and centrifugal forces are the more common in these systems and play an important
role in determining many phenomena including RTI. The effect of rotation making an angle
with gravity was first investigated by Hide (1956a) and gave a detailed analysis only for the
case of rotation parallel to gravity Hide (1956b). Bjerknes et al. (1933) were the first to

I!
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include the effect of vertical rotation in a two-fluid layer system In a recent research, the4
RTI of a continuously stratified fluid in a general rotating field has been investigated by
Divalos-Orozco and Aguilar-Rosas (1989a). They found the upper bound of the growth rate
of instability and, by means of an erample, they found that, for large values of the wave
number, a bifurcation occurs in the plane of the angle of maximum growth rate against the
wave number for vertical component of rotation comparable in magnitude with the horizontal
component. This angle of maxima is measured with respect to the horizontal component of
rotation.

A continuously stratified horizontal magnetic field has been included by Divalos-Orozco
and Aguilar-Rosas (1989b) who obtained the upper bound for the growth rate of the instabil-
ity in a continuously stratified fluid under a general rotation field. See also Divalos-Orozco
(1991).

D~valos-Orozco (1993) investigated the RTI of two superposed fluids under a horizontal
rotation field and also under the simultaneous action of horizontal rotation and magnetic
fields.

In this paper we investigate the RTI in a two-fluid layer system under a general rotation
field. Viscosity is ignored. The results obtained here are an extension of those given in the
paper by Divalos-Orozco (1993). Here, we clarify the importance the horizontal component
of rotation has in RTI and how the vertical component of rotation can not eliminate the
effect of the former until a fixed magnitude, obtained numerically, is reached. Exact and
approximate analytical results will be calculated to help in the understanding of the physics
of the problem and to identify the correct numerical results.

The structure of the paper is as follows. In section 2 the perturbed equations of motion
are presented using normal modes along with the boundary conditions. In section 3, a
discussion of the proper value equation obtained in section 2 is given and one exact and one
approximate solutions are calculated to help in the numerical analysis discussed in section
4. The conclusions are given in section 5.

2. Equations of motion

We consider that the two fluids composing the stratified layer are non-dissipative and
that the Euler's equations govern the system under rotation. We suppose that at the onset
the system is in static equilibrium but in an unstable situation with a fluid of density p2

over another of density pt, where p2 > pi. The gravity force is perpendicular to the two
layers. After a perturbation is given to the system, the variables satisfy a system of linear
equations, where we suppose that all dependent variables have the form expli(k. x + kv y)
+ n t]. Then, a combination of those equations leads to an equation of motion satisfied in
each medium:

nl(kl - D2 )w - 4(sfl" + flzD)2w = 0. ........................... (1)



This equation is solved trying a solution w 0xexp(,/z) and using the condition of continuity
of the vertical component of velocity w at the interface and the jump condition at the
interface, that is, w, = w2 and

wo(2n, - + ,k 2g)Ap + 0(n2 + 4fl.)A(pDwo) - 4f*z[f,(pwo) + pAu'o] = 0 (2)

Here, AG = G2 -G1 , is the jump of a quantity, k, and ky are the x and y components
of the wave vector where k is its magnitude and n is a complex number whobe real and
imaginary parts are the growvh rate of the perturbation and the frequency of the oscillation,
respectively. W+ = k:fl +kyy and fl- = k ily-k7.lL where ,, fly, and Sz are the x, y and
z-components of the rotation vector. All this leads us to the following eigenvalue equation
in non dimensional form:

{•N' + N 2 [Fz + F 2 cos 2 (e - 0)11112 = [I - 2iNFsin(O - o)JA .......... . (3)

where N= n/(gk)'/', Fz =fZ/(gk)1/ 2 , F = £1/(gk)1 /2 and 11 is the magnitude of the
horizontal component of rotation. A = (p2 - Pi)/(Pi + p.,) > 0 represents the densities
difference, 9 is the angle of propagation of the perturbation with respect to the x-axis and
a is the angle of the horizontal component of rotation with respect to the x-axis. From now
on, a will be made equal to zero. This has no influence in the results. For more details in
the derivation see Divalos-Orozco (1993).

3. Approximate and Exact solution

Squaring both sides of Eq.(3) we obtain a forth order nonlinear polynomial equation
with complex coefficients. This leads us to a problem because when squaring, we lose the
information given by the non dimensional densities difference A. This information is impor-
tant because, as we will see, the stability of the system under study is not only determined
by A, but also by the vertical and horizontal components of rotation. Only in the case of
vertical rotation A determines the stability. Int this circumstances, it is necessary to know in
advance which two solutions, of the four obtained from the forth order polyn-)mial, are the
correct. To this end, we obtain an approximate solution. Note that the eigenvalue equation
has a solution purely imaginary, that is, N = i i. Then, the condition ' > I'[FJ + F 2 cos 20]
is obtained, which lets us obtain the following approximations of the two solutions, if we
suppose that N satisfies a similar inequality (Divalos-Orozco (1993)):

N = i AF'sin9 * {A - 2FZ2 - F2(A 2 sin 29 + 2cos2 ))t/ 2 . . . . . . . . . . . . .. . (4)

3



From this equations we obtain a critical F for stability:

FSc2 = (A - 2FJ)/(A 2 sin 26 + 2cos 29) ..................... (5)

This approximation is valid for small F and FZ and for e near to 900, as shown by
numerical analysis. Numerical analysis shows that an increase in F leads to FSc, that is, the
system stabilizes, but also it shown that, after a further increase, the system destabilizes.
In order to show this analytically we looked for an exact solution to this new critical value.
To this end, we suppose again that N is purely imaginary. Then, two inequalities from
both sides of the eigenvalue equation are obtained. One is that shown above. The other is
1> 21F sinO. See Divalos-Orozco (1993) for the conditions necessary to preserve the signs of
the inequality in order to be able of squaring both sides of it. Then, after squaring both sides
of this inequality and multiplying member to member with the first inequality, a condition
for stability is obtained which at criticality for instability gives the following value for the
critical horizontal component of rotation:

FIC2 - .bcos 29{-Fj + IF) + .25cot 2 /2 1} ....................... (6)

This result is exact in the sense that no approximation has been made in its calculation t
and it is a direct result from the eigenvalue equation, in contrast to the method used to obtain
FSc. Note that the value of FIc is independent of the A. The two critical values obtained in
this section will be very useful in determining the correct solutions of the eigenvalue equation.

4. Numerical Analysis

The numerical solution of the forth order polynomial eigenvalue equation corroborated
the results obtained for FSc and FIc when F2 and 0 are small enough. Results were obtained
for different values of A, but here only two values A = .4 and 1 are presented combined with
two values of Fz = .01 and .15, in a plot of F against 0. In Fig. 1, graphs of log F against
0 are shown for FZ = .01. First, lets investigate the case 0 =900. An increase in F leads
the system to FSc, point after which there is stability. With a further increase it reaches
FIc, point after which the system becomes unstable increasing the growth rate again until a
maximum FM is reached. Later the growth rate decreases monotonically. It is important to
note that in the absence of the vertical component of rotation (see Dvalos-Orozco (1993))
there were no Fic at 0 -90". In other words, the value of Flc = oo at 0 =900 when F, = 0.
This may be shown by means of Eq.(6) for Flc taking the limit for 9 = 90 adequately.
Another way is to calculate Flzc instead of Flc. This last procedure gives Flc 2 = 1/16FI
for 0 = 900. For the case of Fig.1, Fz = .01, which gives log F = 1.3979. That is, a very
small value of the vertical component of rotation reduces considerably the stable range of
F 0 =900. After the crossing of the lines FSc and Fic, a line of minimum of growth rate
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appears as a remnant of the former stable area. It disappears after the crossing with FM.
This behavior is similar to that in the absence of FZ. Note that an increase in A increases
the stable angular area along with an increases in the growth rate in the unstable angular
areas. The contrary is valid too when A decreases. Therefore, there are no contradictions
about the meaning of stability. Fig.2 shows curves of F against 0 for Fr = .15. Here, the
stable angular areas are considerably teduced but again an increase in A increases this area.
Notice that this increase is due exclusively to a decrease in the value of FSc.

The limit angle for stability may again be calculated analytically as in Diivalos-Oromco
(1993). However, this angle is approx.mate because use is made of Eqs.(5) and (6) obtained
above, one of which is an approximation. As seen in Fig.(1) and (2), FSc and Plc cross just
at the end of the stable angular area. Use of this idea, equating FSc to Flc, gives:

tan2OL R/{1I - 4FR}. ................................... (7)

where R - {2+(2)1/ 2 )/A. Note that in the absence of FZ this equation reduces to that
obtained by D~valos-Orozco (1993). The figures show that the larger limit angle is attained
for A = 1. Then, from the denominator and for A - 1, we find that F2 = (1/4{2 +
(2)1/2111/2 a .2705 is the approximate value at which the stable angular area must disappear,
Numerical analysis shows that this area disappears at Fz a .33. Fig.3 presents graphs of
01 against Fs for different values of A using the approximate Eq.(7), The approximation is
good for small values of Fa, fair for values a little larger than .1 and bad for larger values.

5. Conclusions

We have shown that a two.fluids system under a general rotation field presents a more
complicated behavior compared to the cases in which the vertical and horizontal components
of rotation are present alone. The densiiies difference parameter A increases the stable
angular area as in the case of horizontal rotation alone but even a small magnitude of the
vertical component of rotation works to eliminate, considerably, the stable angular region
decreasing, at the same time, the growth rate. The angular region disappears when Fz =
33. Note that, to complete the stability analysis for all the 3600 angular region, the graphs

shown in Figs.(1) and (2) must be reflected every 900, The growth rate in the figures id larger
at the lower left side and smaller at the upper right side.
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